

Itgalpur, Rajankunte, Yelahanka, Bengaluru – 560064

Course Code:	Course Title: Network The	ory								
ECE2004	Type of Course: Program C	L-P-C	3	0	3					
Version No.	2.0									
Course Pre-requisites	Fundamental concepts of E	Fundamental concepts of Electrical Components and Laws like Ohm's and Kirchhoff's								
	laws. Basic knowledge of d	ifferential & integral calc	ulus and Li	near alg	ebra. Met	hods				
	of solving Differential equations.									
Anti-requisites	NIL									
Course Description	This Course aims at obtai	ning the solutions to pro	blems in e	lectrical	networks	, using				
	identifying and solving prol	ues and source transform	ations. The	e course	theorems	uses on				
	The course is concentual a	nd is an introductory leve	of course an	d introc	luces stud	onts to				
	the concepts of two port ne	etworks, behaviour under	transient con	nditions	iuces stuu	ents to				
Course objective	The objective of the course	a is to familiarize the lea	rnara with t	he cono	opts of N	[otwork				
Course objective	Theory and attain SKILL	The objective of the course is to familiarize the learners with the concepts of Network Theory and attain SKILL DEVELOPMENT through PROBLEM SOLVING.								
	-		-							
Course Outcomes	On successful completion of	of this course the student	s shall be a	ble to:						
	1. Discuss various net	work reduction technique	S.							
	2. Verify various netw	vork theorems.								
	3. Summarize the bel	navior of RL, RC circuits								
	4. Demonstrate Seri	es and Parallel Combin	nation of	Passive	Compone	ents as				
	resonating circuits,	related parameters and an	nalyze frequ	iency res	sponse					
	5. Illustrate the oper	ation of two-port network	S .							
Course Content:										
	Network Reduction		Dreblem C	a huine a						
Module 1	Techniques and	Assignment/Quiz	task	olving	13 Sessi	ons				
Tanian	Source transformation		tuon							
Types of electric circuit	elements and sources. Sou	rce transformation Me	sh analysis	Super	r mesh an	alvsis				
Nodal analysis Super n	ode analysis Star and d	elta transform Loon	and node	analys	is with li	inearly				
dependent and independe	nt sources for DC and AC r	networks	und node	unurys		lineurry				
Module 2	Network Theorems	Assignment/Quiz	Simulation	n task	10 505	sions				
Topics:		Assignment/Quiz	Sinuation	TLASK	10 565	310113				
Network Theorems, Ex	Network Theorems, Explanation of Superposition, Thevenin's, Norton and Maximum power transfer									
theorems and numerical examples on the same.										
Module 3	Transient analysis	Assignment	Simulation	n task	10Sessio	ns				
Topics:			aut	SENCY UNIL						
Initial conditions, transie	ent analysis of RL, RC c	circuits in time and fr	equency _R d	omains	gusing L	aplace				
Page 1 of 20										

transforms

Resonance: Series and parallel resonance, frequency- response of series and Parallel circuits, Q-Factor, Bandwidth, Circuit Magnification Factor

Module 4	Two-portnetworks	Problem Solving	9 Sessions
	Assignment	task	

Topics:

Introduction to Two-port networks, Z-Parameter, Y-Parameter, ABCD Parameter, H-Parameter and Transmission parameters, modelling with these parameters, relationship between parameters sets.

Text Book(s):

- 1. Ravish.R.Singh, "Electrical Networks", Mcgraw Hill company, 2009
- 2. J.A.Edminister, "Theory and Problems of Electric Circuits", Schaum's Outline Series, 4th Edition.

References:

- 3. G.K.Mittal, "Network Analysis, Khanna", Publishers, 8th edition.
- 4. Van Valkenberg, "Network Analysis", Prentice Hall, 1974. PHI.

Online and Web Resource (s):

1.NPTEL video lecture by Prof. Tapas Kumar Bhattacharya, Department of Electrical Engineering, IIT Kharagpur:https://archive.nptel.ac.in/courses/108/105/108105159/

- 2. NPTEL video lecture by Prof A. Mukharjee<u>https://nptel.ac.in/courses/106105154</u>
- 3. NPTEL assignments: https://archive.nptel.ac.in/courses/108/105/108105159/
- 4. Presidency Library Link:-<u>https://presiuniv.knimbus.com/user#/home</u>

E-Content:

1. FerranReverter, ManelGasulla, "A Novel General-Purpose Theorem for the Analysis of Linear Circuits", IEEE Transactions on Circuits and Systems II: Express Briefs, vol.68, no.1, pp.63-66, 2021. https://ieeexplore.ieee.org/document/9112277

2. Kirchhoff's laws and Tellegen's theorem for networks and continuous media, IEEE Transactions on Circuits and Systems (Volume: 31, Issue: 7, July 1984) <u>https://ieeexplore.ieee.org/document/1085549</u>

3. G. Litjens, T. Kooi, B. Ehteshami, Bejnordi, A. A. A. Setio, F. Ciompi, et al., "A survey on deep learning in medical image analysis", *Medical Image Analysis*, vol. 42, pp. 60-88, 2017.<u>https://pubmed.ncbi.nlm.nih.gov/28778026/</u>

4. A New Method for Generating a Function of Two Independent Variables, IRE Transactions on Electronic Computers (Volume: EC-6, Issue: 3, September 1957) https://ieeexplore.ieee.org/abstract/document/5222014

Topics relevant to "SKILL DEVELOPMENT": Network Theorems, Transient Analysis and Two-port networks for Skill Development through Problem Solving methodologies. This is attained through assessment component mentioned in course handout.

Catalogue prepared by	Mrs. Aruna M
Recommended by the Board of Studies on	BOS Meeting NO: 15th, Dated BOS 28/07/2022
Date of Approval by the Academic Council	Academic Council Meeting No. 18th, Dated 03/08/2022

REGISTRAR

(Established under the Presidency University Act, 2013 of the Karnataka Act 41 of 2013)

A-8[2021] COURSE HAND OUT

SCHOOL: Engineering DEPT.: Electronics and Communication Engineering DATE OF ISSUE: 23/08/2021

NAME OFPROGRAM: B.Tech

- **P.R.C. APPROVALREF** : 1PU/AC-16/ECE/2020-2024/2021
- SEMESTER/YEAR : 3/2stYear
- COURSE TITLE&CODE : Network Theory& ECE2004
- COURSECREDITSTRUCTURE: 3 Credits (L=3, T=0, P=0, C=3)
- **CONTACTHOURS** : 3 Hours/Week
- COURSE INSTRUCTOR : Dr. Balaji

PROGRAM OUTCOMES:

Graduates of the B. Tech. Program in Electronics and Communication Engineering will be able to:

- PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3.Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4**. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

- **PO5**. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6**. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7**. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8**. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9**. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11. Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

COURSE PREREQUISITES:

Fundamental concepts of Electrical Components and Laws like Ohm's and Kirchhoff's laws. Basic knowledge of differential & integral calculus and Linear algebra. Methods of solving Differential equations.

COURSE DESCRIPTION:

This Course aims at obtaining the solutions to problems in electrical networks, using network reduction techniques and source transformations. The course also focuses on identifying and solving problems in electric circuits by applying network theorems. The course is conceptual and is an introductory level course and introduces students to the concepts of two port networks, behavior under transient conditions.

Course Objective:

The objective of the course is to familiarize the learners with the concepts of Network Theory and attain **SKILL DEVELOPMENT** through **PROBLEM SOLVING.**

COURSE OUTCOMES: On successful completion of the course the students shall be able to:

- 1. Discuss various network reduction techniques.
- 2. Verify various network theorems.
- 3. Summarize the behavior of RL, RC circuits

4. Demonstrate Series and Parallel Combination of Passive Components as resonating circuits, related parameters and analyze frequency response

5. Illustrate the operation of two-port networks.

MAPPING OF C.O. WITH P.O

C.O.N0.	P.O.01	P.O.02	P.O.03	P.O.10
1	Н	Н		L
2	Н			L
3	Н	Н	М	T
5	11	11	141	L
4	Н	Н		L
5	Н	Н	М	L

COURSE CONTENT (SYLLABUS):

Module 1:Network Reduction Techniques and Source transformation [13Hrs.][Bloom's levelselected:Comprehension]

Types of electric circuit elements and sources, Source transformation, Mesh analysis, Super mesh analysis, Nodal analysis, Super node analysis, Star and delta transform, Loop and node analysis with linearly dependent and independent sources for DC and AC networks

Module 2: Network Theorems [10 Hrs.][Bloom's levelselected:Comprehension]

Network Theorems, Explanation of Superposition, Thevenin's, Norton and Maximum power transfer theorems and numerical examples on the same.

Module 3: Transient analysis

Initial conditions, transient analysis of RL, RC circuits in time and frequency domains using Laplace transforms. Resonance: Series and parallel resonance, frequency- response of series and Parallel circuits, Q–Factor, Bandwidth, Circuit Magnification Factor

Module 4:Two-portnetworks [09 Hrs.]Bloom's level selected: Comprehension]

Introduction to Two-port networks, Z-Parameter, Y-Parameter, ABCD Parameter, H-Parameter and Transmission parameters, modelling with these parameters, relationship between parameters sets.

SKILL SETS TO BE DEVLOPED:

- 1. An attitude of enquiry.
- 2. Confidence and ability to tackle new problems.
- 3. Ability to interpret events and results.
- 4. Ability to work as a leader and as a member of a team.
- 5. Assess errors in systems/processes/programs/computations and eliminate them.
- 6. Observe and measure physical phenomena.
- 7. Write reports.
- 8. Select suitable equipment, instrument, materials & software
- 9. Locate faults in system/Processes/software.
- 10. Manipulative skills for setting and handling systems/Process/Issues
- 11. The ability to follow standard /legal procedures.
- 12. An awareness of the Professional Ethics.
- 13. Need to observe safety/General precautions.
- 14. To judge magnitudes/Results/issues without actual measurement/actual contacts

DELIVERY PROCEDURE (PEDAGOGY):

Lectures will be conducted with the aid of multi-media projector, blackboard, etc. Assignments based on coursecontentswillbegiventothestudentsattheendofeachunit/topicandwillbeevaluatedatregular interval

Self-Learning Topics:

- a) Explanation of Norton's theorem and Reciprocity theorem
- b) Construction of Dual networks
- c) Basics of Laplace transform.

REFERENCE MATERIALS:

(I) Text Book(s):

- 1. Ravish.R.Singh, "Electrical Networks", Mcgraw Hill company, 2009
- 2. J.A.Edminister, "Theory and Problems of Electric Circuits", Schaum's Outline Series, 4th Edition.

(II). Reference Book(S)

- 1. G.K.Mittal, "Network Analysis, Khanna", Publishers, 8th edition.
- 2 . Van Valkenberg, "Network Analysis", Prentice Hall, 1974. PHI.

(III) Class Notes / Online

Resources

1. NPTEL video lecture by Prof. Tapas Kumar Bhattacharya, Department of Electrical Engineering, IIT Kharagpur: https://archive.nptel.ac.in/courses/108/105/108105159/

- 2. NPTEL video lecture by Prof A. Mukharjeehttps://nptel.ac.in/courses/106105154
- 3. NPTEL assignments: https://archive.nptel.ac.in/courses/108/105/108105159/

(IV) E-content

1. FerranReverter, ManelGasulla, "A Novel General-Purpose Theorem for the Analysis of Linear Circuits", IEEE Transactions on Circuits and Systems II: Express Briefs, vol.68, no.1, pp.63-66, 2021. https://ieeexplore.ieee.org/document/9112277

2. Kirchhoff's laws and Tellegen's theorem for networks and continuous media, <u>IEEE Transactions on Circuits and</u> <u>Systems</u> (Volume: 31, Issue: 7, July 1984) <u>https://ieeexplore.ieee.org/document/1085549</u>

3. G. Litjens, T. Kooi, B. Ehteshami, Bejnordi, A. A. A. Setio, F. Ciompi, et al., "A survey on deep learning in medical image analysis", *Medical Image Analysis*, vol. 42, pp. 60-88, 2017.<u>https://pubmed.ncbi.nlm.nih.gov/28778026/</u>

4. A New Method for Generating a Function of Two Independent Variables, IRE Transactions on Electronic Computers (Volume: EC-6, Issue: 3, September 1957)

https://ieeexplore.ieee.org/abstract/document/5222014

(V)GUIDELINES TOSTUDENTS:

1. Students are required to maintain classwork which will be evaluate at the end of every month

anne

- 2. Students are required to strictly adhere to assignment deadlines.
- 3. Students are required to actively participate in classroom discussions and other activities which is planned in the classroom.
- 4. Students are required to have minimum of 75% of attendance to be eligible to attend exam.
- 5. Follow NPTELvideos

(VI) Presidency University Library Link :- <u>https://presiuniv.knimbus.com/user#/home</u>

COURSE SCHEDULE:

Sl. No.	ACTIVITY	STARTING DATE	CONCLUDING DATE	TOTAL NUMBER OF PERIODS
01	Introduction to Network Theory and its importance in Program			2
02	Introduction of course Network Theory			1
03	Module : 01			10
04	Module : 02			7
05	Mid-Term			
06	Discussion on Mid-Term			1
07	Module : 02 contd			3
08	Module:03			10
11	Module:04			9
12	Concluding the course and discussion on END term exam			1

SCHEDULE OF INSTRUCTION:

SI n o	Session no.	Lesson Title	Topics	Course Outcome Number	Delivery Mode	Reference
1	L1	Program Integration	Introduction to Network Theory and its importance in Program		Lecture	SCY UM

Page 8 of 20

REGISTRAR

2	L2	Course Integration	Introduction of course Network Theory		Lecture	T1:Ch1, R2:Ch1
3	L3	Types of electric circuit elements and sources	Introduction, Resistance, Inductance, Capacitance and Sources	CO 1	Lecture	T1: Ch.1.1, 1.2, 1.3, 1.4, 1.5 R2:1.4, 1.5, 1.6
4	L4	Source transformation	Sourse transformation, Examples	CO 1	Lecture	T1:Ch 1.8 R2:Ch 3.3
5	L5	Source Shifting	Source Shifting, Examples	CO1	Lecture	T1:Ch 1.9
6	L6	Star-Delta transformation	Star-Delta transformation, Delta to Star Transformation, Star to Delta Transformation, Examples.	CO1	Lecture	T1:Ch 2.1, 2.2.1, 2.2.2
7	L7	Mesh analysis	Mesh analysis, Steps to be followed in Mesh Analysis, Examples.	CO1	Lecture	T1:Ch 2.3, 2.3.1, R2: 3.5
8	L8	Super Mesh analysis	Super Mesh analysis, Examples	CO1	Lecture	T1: Ch 2.4
9	L9	Nodal analysis	Nodal analysis, Steps to be followed in Nodal Analysis, Examples	CO1	Lecture	T1: Ch 2.5, 2.5.1, R2: 3.6
10	L10	Super node analysis	Super node analysis, Examples	CO1	Lecture	T1:Ch 2.6
11	L11		module 1 concluded, introduction to Module 2		Lecture	
			Construction of Dual networks		Self- Learnin g	T1
12	L12	Statement of Network Theorems	Superposition Theorem,Thevenin'		Lecture	3.4, 3.6 RAR Registrar

			s theorem, Norton's	CO 2		
			Theorem, Maximum			
			Power Transfer			
			Theorem,			
			Reciprocity			
			Theorem,			
			Millman's			
			Theorem.			
13	L13	Super position theorem explanation	Super position theorem explanation	CO3	Lecture	T1:3.2 R2:9.4
14	L14		Numerical examples on superposition theorem		Lecture	T1:3.2
15	L15		Numerical examples on superposition theorem	CO3 Lect		T1:3.2
			Assignment 1	CO1, CO2		
16	L16	Thevenin's theorem explanation	Thevenin's theorem explanation	CO3	Lecture	T1:3.3, R2: 9.5
17	L17		Numerical examples on Thevenin's theorem	CO3	Lecture	T1:3.3
18	L18		Numerical examples on Thevenin's theorem	CO3	Lecture	T1:3.3
			Norton's Theorem,	eorem,		
19	L19		Maximum power transfer theorem explanation	CO3	Lecture	T1:Ch.3.63
		Test - 1				
20	L20		Discussion on Test- 1	Lecture		
21	L21		Numerical examples on Maximum power	CO3	Lecture	RAR

			transfer theorem			
22	L22		Numerical examples on Maximum power transfer theorem	CO3	Lecture	T1: Ch.3.63
23	L23		Module 2 concluded, Introduction of module 3	Lecture		T1:Ch8.1-8.3
24	L24	Introduction to transient analysis, Initial conditions	Introduction, Network Equations, Initial conditions	CO4	Lecture	T1:Ch8.1-8.3
25	L25	Procedure for evaluating initial conditions	Procedure for evaluating initial conditions, Examples	CO4	Lecture	T1: Ch 8.4
26	L25	Transient analysis of RL circuits	Transient analysis of RL circuits(Derivation), Examples	CO4 Lecture		T1: Ch 8.5
27	L27	Transient analysis of RC circuits	Transient analysis of RC circuits(Derivation), Examples	CO4	Lecture	T1: Ch 8.6
			Basics of Laplace Transform		Self learning	
28	L28	Introduction to Laplace Transforms	Introduction, Laplace Transformation, Laplace transform of some important functions	CO4	Lecture	T1:Ch 9.1, 9.2, 9.3
29	L29	Transformed circuit, Laplace transform and time domain solution for RL network	Transformed circuit, R,L,C, Resistor- Inductor circuit (Derivation), Examples	CO4	Lecture	T1: Ch 9.4, 9.5
30	L30	Laplace transform and time domain solution for RC network	Laplace transform and time domain solution for RC network(Derivation) , Examples	CO4	Lecture	T1: Ch 9.6
			Assignment 2		Je	SENCY UNITED
					REGIST	RAR Registrar

31	L31		Solving differential equations using Laplace Transforms	CO4	Lecture	R2: Ch:7.4
32	L32		Numerical Examples	CO4	Lecture	T1
33	L33		Module 3 concluded, introduction of module 4	Lecture		T1
		Test 2				
34	L34		Discussion on Test 2		Lecture	
35	L35		Introduction to Two port networks, Open circuit impedance parameters	C05	Lecture	T1:Ch 11.1- 11.2
37	L36		Z parameters	CO5	Lecture	T1:Ch 11.3
38	L37		Transmission parameters	CO5	Lecture	T1:Ch 11.4
39	L38		Hybrid Parameters	CO5	Lecture	T1:Ch 11.6
40	L39		Numerical Examples	CO5 Lecture		T1:Ch 11.12
46	L40		Concluding the course and discussion on END term exam	Lecture		

Topics relevant to "SKILL DEVELOPMENT": Network Theorems, Transient Analysis and Two-port networks for Skill Development through Problem Solving methodologies. This is attained through the Assignment as mentioned in the assessment component.

ASSESSMENT SCHEDULE FOR THEORY COMPONENT:

Sl.no	Assessment type	Contents	Course outcome Number	Duration In Hours	Marks	Weightage	Venue, DATE &TIME
1.	Assignment	Module-1	1	10 Min	30	15%	
2.	MID- Term	Module-1,2 (two	1,4	1 hr.	50 REGISTR	25% AR (2 Registrar)	

		topics)					
3.	Quiz	Module 3	3	10 Min	20	10%	
4.	End Term Final Exam	Module-1,2,3,4,	1,2,3,4	3 hr.	100	50%	

COURSE CLEARANCE&EVALUATION CRITERIA:

A minimum of 75% attendance is required for both lab and theory separately to attend the end term exam. Make-up policy will be only as per academic regulation.

	MethodofAssessment forCourseswithCreditStructure(L _ T _0)or(L _ 0_0)				
	ComponentsofContinuousA ssessments	Weightage(% of TotalMark s)	DurationofAsses sm ent		
1.	MidTerm	25%	1.5hour		
	ThisComponentofcontinuousassessmentshallconsistofatleastTWO(02)of thefollowing: (1) Assignment(s) (2) Quiz				
2.		25%	NA		
3.	EndTermFinalExaminations	50%	3hours		
	Total	100%			

MAKEUP POLICY:

If the student misses an evaluation component, he/she may be granted a make-up. In case of an absence that is foreseen, make-up request should be personally made to the Instructor-in-Charge, well ahead of the scheduled evaluation component. Reasons for unanticipated absence that qualify a student to apply for make-up include medical emergencies or personal exigencies. In such an event, the student should contact the Instructor-in-Charge as soon as practically possible.

CONTACT TIMINGS IN THE CHAMBER FOR ANY DISCUSSIONS:

It will be announced in the class. Interested students may meet the Instructor In-charge during the Chamber Consultation Hour to clear doubts.

SAMPLE THOUGHT PROVOKING QUESTIONS:

REGISTRAR

SL NO	QUESTION	MARKS	COURSE OUTCOME NO.	BLOOM'S LEVEL
1.	It is possible to calculate the proper values of resistors necessary to form one kind of network delta or star (Δ or Y) that behaves identically to the other kind. A prime application for Δ -Y conversion is in the solution of unbalanced bridge circuits, such as the one below:	8	CO1	Comprehension
	$10 \text{ V} \stackrel{+}{=} \begin{array}{c} & & & & & & \\ & & & & & \\ 150 \Omega_{1} \text{ V} & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ $			
	 a. List the number of star and delta connections in the bridge circuit. Find the total current which flows through the circuit using Δ-Y conversion. 			
2.	The "Mesh Current" method of network analysis works well to calculate currents in any branch of the circuits. Take this circuit, for example:	8	CO1	Comprehension
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	Write the KVL equations for this circuit, by assuming mesh current directions, and then solve for the current through 1 ohm resistor.		REGISTRAR	Page 14 of 20

3.	In a star-connected, three-phase system, the line voltage is equal to $\sqrt{3}$ times the phase voltage. Also the line current is equal to the phase current. In this type of system, three coils, each having a resistance of 8 Ω and 0.02 H respectively are connected in star across 3-ø, 230 V, 50 Hz supply. List the unknown parameters and find the listed parameters.	10	CO5	Comprehension
4.	a. The frequency response H(jw) is a function that relates the output response to a sinusoidal input at frequency w. we can separate H(jw) into its magnitude and its phase component. Find the frequency response of a system H(s) $= \frac{s+2}{s+8}$ then find magnitude and phase component response y(t) for x(t) = sin (314t- 120 ⁰).	5	C04	Comprehension
5.	The current in any given branch of a multiple- source circuit can be found by determining the currents in that particular branch produced by each source acting alone, with all other sources replaced by their internal impedances. The total current in the given branch is the phasor sum of the individual source currents in that branch. Find the current through the 3 + j4 ohm impedance in the following figure. $50 \ \angle 90^{\circ} V \bigcirc j_{j4} \Omega \longrightarrow j_{50} \ \angle 0^{\circ} V$	10	C03	Comprehension

Target set for course Outcome attainment:

Sl. No.	C.O. No.	Course Outcomes	Target set for attainment in percentage
01	CO1	Explain various network reduction techniques.	50 %
02	CO2	State various network theorems.	50 %
03	CO3	Explain Superposition theorem, Thevenin's theorem and Maximum power transfer theorem.	50 %
04	CO4	Discuss the behavior of RL and RC circuits for DC and AC excitation.	50 %
05	CO5	Discuss the parameters of two port network and relation between voltage, current and power relations in a poly phase circuits.	50 %

kdkale

Signature of the course Instructor Mrs. Aruna M

This course has been duly verified Approved by the D.A.C.

Signature of the Chairperson D.A.C.

REGISTRAR

Course Completion Remarks & Self-Assessment. [This has to be filled after the completion of the course]

[Please mention about the course coverage details w.r.t. the schedule prepared and implemented. Any specific suggestions to incorporate in the course content. Any Innovative practices followed and its experience. Any specific suggestions from the students about the content, Delivery, Evaluation etc.]

Sl.no.	Activity	Scheduled Completion Date	Actual Completion Date	Remarks
	As listed in the course Schedule			
1	Over View of the course			
2	Module : 01			
3	Module: 02			
4	Assignment			
5	Mid Term Exam			
6	Module:03			
7	Module:04			
8	Quiz			

Any specific suggestion/Observations on content/coverage/pedagogical methods used etc.:

Course Outcome Attainment:

Program Outcome Attainment:

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12

REGISTRAR

Name and signature of the Course Instructor:

MR. KIRAN DHANAJI KALE

D.A.C. observation and approval:

BLOOM'S TAXONOMY

Learning Outcomes Verbs at Each Bloom Taxonomy Level to be used for writing the course Outcomes.

Cognitive Level	Illustrative Verbs	Definitions
Knowledge	arrange, define, describe, duplicate, identify, label, list, match, memorize, name, order, outline, recognize, relate, recall, repeat, reproduce, select, state	remembering previously learned information
Comprehension	classify, convert, defend, discuss, distinguish, estimate, explain, express, extend, generalize, give example(s), identify, indicate, infer, locate, paraphrase, predict, recognize, rewrite, report, restate, review,	grasping the meaning of information
	6	

	select, summarize, translate	
Application	apply, change, choose, compute, demonstrate, discover, dramatize, employ, illustrate, interpret, manipulate, modify, operate, practice, predict, prepare, produce, relate schedule, show, sketch, solve, use write	applying knowledge to actual situations
Analysis	analyze, appraise, breakdown, calculate, categorize, classify, compare, contrast, criticize, derive, diagram, differentiate, discriminate, distinguish, examine, experiment, identify, illustrate, infer, interpret, model, outline, point out, question, relate, select, separate, subdivide, test	breaking down objects or ideas into simpler parts and seeing how the parts relate and are organized
Synthesis	arrange, assemble, categorize, collect, combine, comply, compose, construct, create, design, develop, devise, explain, formulate, generate, plan, prepare, propose, rearrange, reconstruct, relate, reorganize, revise, rewrite, set up, summarize, synthesize, tell, write	rearranging component ideas into a new whole
Evaluation	appraise, argue, assess, attach, choose, compare, conclude, contrast, defend, describe, discriminate, estimate, evaluate, explain, judge, justify, interpret, relate, predict, rate, select, summarize, support, value	making judgments based on internal evidence or external criteria

anne Ċ REGISTRAR

anne Ċ REGISTRAR

School of Engineering

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Student Centric Methods for Winter Semester AY 2022-23

Year: 2022-23

Course Title

Semester: II

: ECE 2004

Section: 1ECE3

: NETWORK THEORY

Course Code

Instructor In-Charge : Dr.BALAJI K.A

Instructors : Dr.BALAJI K.A

<u>**1. EXPERIENTIAL LEARNING</u>** : NOT APPLICABLE</u>

<u>2. PROBLEM SOLVING METHODOLOGIES:</u> Name of the Topic: TUTORIAL -1 on 10th Febrauary 2023

Remarks: The students have learned how to calculate Voltage and current. This activity has helped the students to enhance their problem solving & analytical skill.

3. PARTICIPATIVE LEARNING

: QUIZ

Offline Quiz conducted on 13:03:2023

Tittle :Module 1-4

Total :58

Present: 56

Absent: 02

S.I No	Student Roll Number	Student Name	Attendence
1	20221ECE0072	SINCHANA B S	Р
2	20221ECE0317	AMBARISH K	Р
3	20221ECE0215	BHOOMIKA B	Р
4	20221ECE0106	AMRUTHA S MALAGAR	Р
Р	20221ECE0107	BHAVANI S MALAGAR	Р
Р	20221ECE0108	BHUVAN CHANDRA M	Р
Р	20221ECE0109	MANSI GAUTAM	Р
8	20221ECE0110	NEERAJA H C	Р
9	20221ECE0111	RAVIKUMAR R	Р
10	20221ECE0112	SIDDESH B S	Р
11	20221ECE0216	BALAJI BHARGAV R	Р
12	20221ECE0217	TEJUS M D	Р
13	20221ECE0113	AKSHATA JITENDRA DARJI	Р
14	20221ECE0114	ANUSHREE K N	Р
15	20221ECE0115	C ARCHANA	Р
16	20221ECE0116	BHARATH N N	Р
17	20221ECE0117	CHAITAN TALEKAR	Р
18	20221ECE0118	CHAITRA C	Р
19	20221ECE0119	CHIRAAG S J	Р
20	20221ECE0120	DARSHAN N	Р
21	20221ECE0121	DARSHAN Y	Р
22	20221ECE0122	DHEERAJ M RAY	Р
23	20221ECE0123	G BHARGAV	Р
24	20221ECE0124	GNANESH M C	Р
25	20221ECE0125	HARSHITHA C	Α
26	20221ECE0126	HARSHITHA C N	Р
27	20221ECE0127	KANNIKA SHRIDHAR BELLAMKONDI	Р
28	20221ECE0128	KOWSHIK B H	Р
29	20221ECE0129	KRISHNAVENI M	Р
30	20221ECE0130	KUMUDHINI S	WHA ENCY UN
31	20221ECE0131	KISHORE KUMARR GACHINAMANI	Registrar
			ANGALOS

32	20221ECE0132	LALITHASHREE M	Α
33	20221ECE0133	LIKHITHA R K	Р
34	20221ECE0134	MANASA B S	Р
35	20221ECE0135	MANOJ K S	Р
36	20221ECE0136	MAYOOR S	Р
37	20221ECE0137	MONISH M N	Р
38	20221ECE0138	MOHAMMED TOUFIQ SHAHAPUR	Р
39	20221ECE0139	MOKSHITA A	Р
40	20221ECE0140	MONIKA C	
41	20221ECE0141	MAHADEV G S	Р
42	20221ECE0142	NAVYA G	Р
43	20221ECE0143	N C SHOBHA	Р
44	20221ECE0144	OMKAR S	Р
45	20221ECE0145	PRABHURAJ	Р
46	20221D/0D014/	BHAVIKATTI	D
46	20221ECE0146	PRAGNA A	P
47	20221ECE0147	PRAIWAL R N	Р
10	2022112010147		T D
40	20221ECE0148		P
49	20221ECE0149	RAHUL G	Р
50	20221ECE0150	REVANTH H M S	Р
51	20221ECE0151	RISHITHA T R	Р
52	20221ECE0152	RETHIKA SAI R	Р
53	20221ECE0153	S SHOBITH	Р
54	20221ECE0154	SHRIYA L	Р
55	20221ECE0155	SRIKANTH V R	Р
56	20221ECE0156	SUSHIL	Р
57	20221ECE0157	VARUN A	Р
58	20221ECE0158	VARUN K P	Р

QUIZ QUESTIONS

anne

1) Which of the following expression is true in case of Z parameters? (CONo.1) [Knowledge]

a) $V_1 = Z_{11} V_1 + Z_{12} I_2$ b) $V_1 = Z_{11}I_1 + Z_{12} V_2$ c) $V_1 = Z_{11}I_1 + Z_{12} I_2$ d) $V_2 = Z_{11}I_1 + Z_{12} I_2$

2) While applying superposition theorem (Ideal Case) when voltage source is turned off it is replaced by ______ and when current source is turned off it is replaced by

Approved by AICTE, New Delhi

- a) Open circuit, Short Circuit
- b) Short circuit, Open Circuit
- c) Low resistance in series, very high resistance in series
- d) High resistance in series, very low resistance in series

(C.O.No.1) [Knowledge]

(C.O.No.1)

- a) 1.64 Ohm
- b) 2 Ohm
- c) 100 Ohm
- d) None of the above
- 4. The expression of current in R-L circuit is? [Knowledge]
- a) i=(V/R)(1+exp((R/L)t))
- b) i=-(V/R)(1-exp((R/L)t))
- c) i=-(V/R)(1+exp((R/L)t))
- d) i=(V/R)(1-exp((R/L)t))

5. Calculate the value of V1 and V2. [Knowledge]

(C.O.No.1)

RESIDENCY UNIVERS

- c) 6V, 7V
- d) 7V, 8V
- 6) KCL deals with the conservation of ____ and it is applied at _____ (C.O.No.1) [Knowledge]
- a) Momentum & Loop
- b) Mass & Node
- c) Potential Energy & Loop
- d) Charge & Node
- 7) Once the circuit is transformed to a voltage source where will the resistance be connected?
- a) In series with the voltage source
- b) In parallel with the voltage source
- c) The resistance is removed from the circuit

d) Resistance is multiplied by 10 and connected in series with the source (C.O.No.1) [Knowledge]

8) Calculate the Thevenins resistance across the terminal AB for the following circuit.

a) 4.34 ohm b) 3.67 ohm c) 3.43 ohm d) 2.32 ohm [Knowledge]

(C.O.No.1)

9) While computing the Thevenin equivalent resistance and the Thevenin equivalent voltage, which of the following steps are undertaken?

a) Both the dependent and independent voltage sources are short-circuited and both the dependent and independent current sources are open-circuited

b) Both the dependent and independent voltage sources are open-circuited and both the dependent and independent current sources are short-circuited

c) The dependent voltage source is short-circuited keeping the independent voltage source untouched and the dependent current source is open-circuited keeping the independent current source untouched

d) The dependent voltage source is open-circuited keeping the independent voltage source untouched and the dependent current source is short-circuited keeping the independent current source untouched

10) In a parallel circuit, with a number of resistors, the voltage across each resistor is

- a) The same for all resistors
- b) Is divided equally among all resistors
- c) Is divided proportionally across all resistors
- d) Is zero for all resistors

(C.O.No.1)

[Knowledge]

11)Condition of reciprocity in Y-parameter representation is

a) Y11 = Y12. b) Y12 = Y21. c)Y11 = Y22. d)Y12 = Y22.

(C.O.No.1) [Knowledge]

12) Which is the correct condition of symmetry observed in z-parameters?

a. $z_{11} = z_{22}$ b. $z_{11} = z_{12}$ c. $z_{12} = z_{22}$ d. $z_{12} = z_{21}$

(C.O.No.1) [Knowledge]

- 13) If many branches or nodes are present in a parallel configuration in a network, which method approves to be extensively beneficial for network analysis ?
 - a. Mesh method
 - b. Node method
 - c. Both a and b
 - d. None of the above

(C.O.No.1) [Knowledge]

Remarks: The students have participated in the quiz and explore about the knowledge in network analysis has helped the students to enhance their problem solving & analytical skill.

Signature of Instructors:

Bala K.

Bala

Signature of Instructor In-Charge:

(ale

K.

HOD-ECE

Itgalpur, Rajankunte, Yelahanka, Bengaluru – 560064

Course Code: ECE3007	Course Title: Control 2021)	System (Only for 2020 and		4	0	4	
Lelever			L- P- C		Ŭ		
	Type of Course: Prog	am Core & Theory only					
Version No.	1.0	1.0					
Course Pre-	Fundamental concept	ts of network theory, diffe	rential equa	ations	and La	aplace	
requisites	transforms.						
Anti-requisites	NIL						
Course Description	The purpose of this course is to enable the students about the importance of control system engineering and to develop the basic abilities of modelling and analyzing the control system. The course is both conceptual and analytical in nature and needs fair knowledge of Mathematical and computing. The course develops the critical thinking and analytical skills. The course also enhances the programming and simulation abilities through assignments.						
Course Objectives	The objective of the course is to familiarize the learners with the concepts of Control System and attain the SKILL DEVELOPMENT through PROBLEM SOLVING.						
Course	On successful complet	ion of this course the students	shall be abl	e to:			
Outcomes	(1) Describe various systems and their representations using Block diagrams and Signal Flow graphs						
	(2) Employ time domain analysis to determine the transient performance parameters of the system.						
	(3) Explain the system	stability in the frequency doma	n				
	(4) Identify the need of State Space Representation						
Course Content:							
Module 1	Modelling of Systems	Assignment/quiz	Knowledge a Comprehens	ind ion	Ses	14 sions	
Topics:							
Basic elements in control systems – Open and closed loop systems – Transfer function. Mathematical Modeling of Systems: Electrical Systems, Mechanical Systems [Translational and Rotational Mechanical Systems]. Electrical analogy of mechanical Systems– Force Voltage and Force Voltage Analogy. Block Diagram - Block diagram reduction techniques – Signal flow graphs – Mason's Gain Formula.							
Module 2	Time Response Analysis	Assignment/quiz	Comprehens	ion	Ses	11 sions	
Topics:			Jan	e NCY UN			
Time response – Transient and Steady State Response. Order and Type of System. Concept of Poles and Zeros. Unit Impulse, Unit Step and Unit Ramp Response of First Order Systems, Unit Step							

Response of Second Order Systems. Time domain specifications – Peak Time, Rise Time, Maximum **Overshoot, Settling Time, Steady State Error, Static Error Constants.** Frequency domain Assignment/quiz 17 Module 3 Comprehension analysis and stability Sessions Topics: Stability of Control Systems: Characteristics equation -Routh Hurwitz criterion Root Locus - Stability analysis using root locus Frequency response – Frequency Response Specifications – Gain Margin, Phase Margin, Bandwidth, **Resonant Peak, Resonant Frequency.** Bode plot - Constant Gain, Simple and Repeated Pole, Simple and Repeated Zero. Polar plot – Nyquist Stability Criterion. Introduction of 11 Case study Comprehension Module 4 Modern Control Sessions System Topics: Concept of State, State variables & State model, Modeling of electrical and mechanical systems in state space. State Transition Matrix, Solution of state space equation. Concepts of controllability and observability **Targeted Application & Tools that can be used:** Application of this course is in the field of process control industries, automobile industries, aerospace etc. 1. MATLAB/ SIMULINK 2. Octave **Text Book(s):** 1. Katsuhiko Ogata, "Modern Control Engineering", Prentice Hall, 5th edition. 2. Norman S Nise, "Control Systems Engineering", Wiley, 7th edition. **Reference(s): Reference Book(s):** 1. Richard C Dorf, Robert H Bishop, "Modern Control Systems", Pearson Education, 11th Edition 2. Benjamin Kuo, "Automatic Control Systems", PHI, 7th Edition **Online Resources (e-books, notes, ppts, video lectures etc.):** 3. Class Notes, Class Slides 4. NPTEL ONLINE Videos: Lecture by Prof. Ramkrishna Pasumarthy, IIT Madras https://onlinecourses.nptel.ac.in/noc22 ee31/preview 5. Presidency University Library Link https://presiuniv.knimbus.com/user#/home 6. https://ocw.mit.edu/resources/res-6-010-electronic-feedback-systems-spring-2013/coursevideos/lecture-1-introduction-and-basic-concepts/ 7. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-003-signals-andane systems-fall-2011/lecture-videos/lecture-2-discrete-time-dt-systems/

8. http	os://o	cw.mit.edu/courses/electrical-engineering-and-computer-science/6-003-signals-and-		
sys	tems-	fall-2011/lecture-videos/lecture-10-feedback-and-control/		
E-content:				
	1. M. Phister, "Digital Control Systems-Present and Future," in IRE Transactions on Industrial			
	E	lectronics, vol. PGIE-11, pp. 44-47, Dec. 1959, doi: 10.1109/IRE-IE.1959.5007732.		
	https://ieeexplore.ieee.org/document/5007732			
	2. J	V. Wallbank, S. Singh and S. Walters, "An introduction to the implementation of digital		
	c	ontrol — Leading to the control of electrical power systems," 2017 52nd International		
	U	Universities Power Engineering Conference (UPEC), 2017, pp. 1-5, doi:		
	1	0.1109/UPEC.2017.8232032.		
	h	ttps://ieeexplore.ieee.org/abstract/document/8232032		
	3. V	7. Dimitrov, N. Hinov and K. Genev, "Synthesis and Implementation of a Digital Control		
	S	ystem for a Buck DC-DC Converter," 2021 29th National Conference with International		
	Р	articipation (TELECOM), 2021, pp. 161-166, doi:		
	1	0.1109/TELECOM53156.2021.9659658.		
	h	ttps://ieeexplore.ieee.org/document/9659658		
	4. S	. V. Bell, T. M. Murray and K. T. Duncan, "Design of direct digital control systems for		
	b	uilding control and facilities management," IEEE Proceedings of the SOUTHEASTCON '91,		
	1	991, pp. 674-676 vol.2, doi: 10.1109/SECON.1991.147841.		
	h	ttps://ieeexplore.ieee.org/document/147841		
Topics rele	evant	to "SKILL DEVELOPMENT": Laplace Transform, Routh-Hurwitz Criterion, Bode Plot,		
Nyquist Plo	ot, Sta hroug	te-space techniques for Skill Development through Problem Solving methodologies. This was assessment component mentioned in course handout		
Catalogue	.in o uz			
prepared b	у	Mrs. Priyanka Ray		
Recommen	ecommended			
by the Board B		BUS Meeting NO: 15th, Dated BUS 28/07/2022		
Date of		Academic Council Meeting No. 18th, Dated 03/08/22		
Approval b	by nic			
Council	me			

anne REGISTRAR

(Established under the Presidency University Act, 2013 of the Karnataka Act 41 of 2013) ACA-2 [2022] COURSE HANDOUT

SCHOOL: Engineering	DEPT.:ECE	DATE OF ISSUE: 27/08/2022
NAME OF THE PROGRAM	:B. Tech (ECE)	
P.R.C.APPROVAL REF.	: PU/AC-18.4/ECE	15/ECE/2022-24
SEMESTER/YEAR	:5/3	
COURSE TITLE & CODE	:Control Systems	& ECE3007
COURSE CREDIT STRUCTURE	:4 Credits ($L = 4$,	P = 0, C = 4)
CONTACT HOURS	:4 Hours/Week	
COURSE INSTRUCTORS	: Mr. Tony	
INSTRUCTOR INCHARGE	: Mr. Tony	

PROGRAM OUTCOMES:

Graduates of the B.Tech. Program in Electronics and Communication Engineering will be able to:

PO1.Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.(H)

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.(H)

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.(M)

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.(M)

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.(M)

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

REGISTRAR

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.(L)

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

COURSE PREREQUISITES:

The student should have fundamental concepts of network theory, differential equations and Laplace transforms.

COURSE DESCRIPTION:

The purpose of this course is to enable the students about the importance of control system engineering and to develop the basic abilities of modelling and analyzing the control system. The course is both conceptual and analytical in nature and needs fair knowledge of Mathematical and computing. The course develops the critical thinking and analytical skills. The course also enhances the programming and simulation abilities through assignments.

COURSE OBJECTIVE:

The objective of the course is to familiarize the learners with the concepts of Control System and attain the <u>SKILL</u> <u>DEVELOPMENT</u> through <u>PROBLEM SOLVING</u>.

COURSE OUTCOMES: On successful completion of the course the student shall be able to:

CO1:Describe various systems and their representations using Block diagrams and Signal Flow graphs

CO2: Employ time domain analysis to determine the transient performance parameters of the system.

CO3:Explain the system stability in the frequency domain

CO4:Identify the need of State space representation

MAPPING OF C.O. WITH P.O: [H-HIGH, M- MODERATE, L-LOW]

CO NO.	PO 1	PO 2	PO 3	PO 4	PO 5	PO 10
1	Н	Н		М		L
2	Н	Н			М	L
3	Н	Н	М		М	L
4	Н	Н			(L
•	•	•	•	•		July -

REGISTRAR

COURSE CONTENT(SYLLABUS):

Module-I: MODELLING OF SYSTEMS [14Hrs] [Bloom's level selected: Knowledge & Comprehension] Basic elements in control systems – Open and closed loop systems – Transfer function. Mathematical Modeling of Systems: Electrical Systems, Mechanical Systems [Translational and Rotational Mechanical Systems]. Electrical analogy of mechanical Systems– Force Voltage and Force Voltage Analogy. Block Diagram - Block diagram reduction techniques – Signal flow graphs – Mason's Gain Formula.

Module- II: TIME RESPONSE ANALYSIS[11Hrs] [Bloom's level selected: Comprehension]

Time response – Transient and Steady State Response. Order and Type of System. Concept of Poles and Zeros. Unit Impulse, Unit Step and Unit Ramp Response of First Order Systems, Unit Step Response of Second Order Systems. Time domain specifications – Peak Time, Rise Time, Maximum Overshoot, Settling Time. Steady State Error, Static Error Constants

Module -III :FREQUENCY DOMAINANALYSIS AND STABILITY[17Hrs] [Bloom's level selected:
Comprehension]

Stability of Control Systems: Characteristics equation -Routh Hurwitz criterion

Root Locus - Stability analysis using root locus

Frequency response – Frequency Response Specifications – Gain Margin, Phase Margin, Bandwidth, Resonant Peak, Resonant Frequency.

Bode plot - Constant Gain, Simple and Repeated Pole, Simple and Repeated Zero.

Polar plot – Nyquist Stability Criterion.

Module-IV: INTRODUCTION OF MODERN CONTROL THEORY [11Hrs] [Bloom's level selected:

Comprehension]

Concept of State, State variables & State model, Modeling of electrical and mechanical systems in state space. State Transition Matrix, Solution of state space equation. Concepts of controllability and observability

SKILL SETS TO BE DEVLOPED:

- 1. An attitude of enquiry.
- 2. Confidence and ability to tackle new problems.
- 3. Ability to interpret events and results.
- 4. Ability to work as a leader and as a member of a team.
- 5. Assess errors in systems/processes/programs/computations and eliminate them.
- 6. Observe and measure physical phenomena.

REGISTRAR

- 7. Write reports.
- 8. Select suitable equipment, instrument, materials & software
- 9. Locate faults in system/Processes/software.
- 10. Manipulative skills for setting and handling systems/Process/Issues
- 11. The ability to follow standard /Legal procedures.
- 12. An awareness of the Professional Ethics.
- 13. Need to observe safety/General precautions.

14. To judge magnitudes/Results/issues without actual measurement/actual contacts

DELIVERY PROCEDURE (PEDAGOGY):

Lectures will be conducted with the aid of multi-media projector, blackboard, etc. Assignments based on course contents will be given to the students at the end of each unit/topic and will be evaluated at regular interval

Self-Learning Topics:

Discuss Rotational mechanical systems and analogy, Describe AC Servo motor.

Controller types

Experiential Learning Topics:

Finding the response of systems using MATLAB.

Using MATLAB to plot the root locus and Bode Plot

Using MATLAB to verify the response of a system in state space

REFERENCE MATERIALS:

1. Text Book(s):

- 1. Katsuhiko Ogata, "Modern Control Engineering", Prentice Hall, 5th Edition
- 2. Norman S Nise, "Control Systems Engineering", Wiley, 7th Edition

2. Reference Books

- 1. Richard C Dorf, Robert H Bishop, "Modern Control Systems", Pearson Education, 11th Edition
- 2. Benjamin Kuo, "Automatic Control Systems", PHI, 7th Edition

3. Other Resources:

- 1. Class Notes, Class Slides
- 2. NPTEL ONLINE Videos: Lecture by Prof. RamkrishnaPasumarthy, IIT Madras https://onlinecourses.nptel.ac.in/noc22_ee31/preview
- Presidency University Library Link https://presiuniv.knimbus.com/user#/home
- 4. https://ocw.mit.edu/resources/res-6-010-electronic-feedback-systems-spring-2013/course-videos/lecture-1-introduction-and-basic-concepts/

- 5. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-003-signals-and-systems-fall-2011/lecture-videos/lecture-2-discrete-time-dt-systems/
- 6. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-003-signals-and-systems-fall-2011/lecture-videos/lecture-10-feedback-and-control/

4. E Content:

- M. Phister, "Digital Control Systems-Present and Future," in IRE Transactions on Industrial Electronics, vol. PGIE-11, pp. 44-47, Dec. 1959, doi: 10.1109/IRE-IE.1959.5007732. https://ieeexplore.ieee.org/document/5007732
- J. V. Wallbank, S. Singh and S. Walters, "An introduction to the implementation of digital control Leading to the control of electrical power systems," 2017 52nd International Universities Power Engineering Conference (UPEC), 2017, pp. 1-5, doi: 10.1109/UPEC.2017.8232032. https://ieeexplore.ieee.org/abstract/document/8232032
- V. Dimitrov, N. Hinov and K. Genev, "Synthesis and Implementation of a Digital Control System for a Buck DC-DC Converter," 2021 29th National Conference with International Participation (TELECOM), 2021, pp. 161-166, doi: 10.1109/TELECOM53156.2021.9659658. https://ieeexplore.ieee.org/document/9659658
- S. V. Bell, T. M. Murray and K. T. Duncan, "Design of direct digital control systems for building control and facilities management," IEEE Proceedings of the SOUTHEASTCON '91, 1991, pp. 674-676 vol.2, doi: 10.1109/SECON.1991.147841. https://ieeexplore.ieee.org/document/147841

Presidency University Library Link :- <u>https://presiuniv.knimbus.com/user#/home</u>

GUIDELINES TO STUDENTS:

- The students are advised to be very much regular to the classes and sincerely attempt the learnings listed in the Pedagogical section.
- The students are advised to take down the notes legibly which serves as a firsthand information to study and revise lecture topics on day to day basis.
- The students are advised to visit the Microsoft teams on a regular basis to access the supporting materials shared by the course instructors.
- Control Systems is a problem-based course where mostly practicing the problems is very much important than reading the theory and hence for studying the concepts, any book can be followed such as mentioned in reference books or else you can download pdf notes from NPTEL.
- The students are advised to use the journals, technical magazines and other relevant materials.
- The students are advised to watch the video lectures available online to understand and review the concepts delivered in the class as well as problems assigned for self-learning topics.
- Students are required to strictly adhere to assignment deadlines.
- Students are required to actively participate in classroom discussions and other activities which is planned in the classroom.

REGISTRAR Registra
• Students are required to have minimum of 75% of attendance to be eligible to attend exam

COURSE SCHEDULE:

SI. No.	ACTIVITY	STARTING DATE	CONCLUDING DATE	TOTAL NUMBER OF SESSIONS
01	Over View of the course			01
02	Module : 01			14
03	Quiz 1/ Assignment 1			
04	Module : 02			11
05	Mid Term Examination			NA
06	Mid Term Paper Discussion			01
07	Module:03			17
08	Quiz 2/ Assignment 2			
09	Module 4			11
10	End Term Examination			NA

SCHEDULE OF INSTRUCTION:

Module: 1MODELLING OF SYSTEMS

SI. no	Date	Lesson Title	Topics	Course Outcome Number	Delivery Mode	Reference
1	L1	Program Integration/ Course Integration				
2	L2	Control System	Introduction, open loop and closed loop control systems. Review of Laplace Transform	CO1	Chalk/ Board/ Slides	T1, T2
3	L3	Mathematical Modelling	Transfer Function, Mathematical Modelling of Electrical Systems – Part 1	CO1	Chalk/ Board/ Slides	T1, T2
4	L4	Mathematical Modelling	Mathematical Modelling of Electrical Systems – Part 2	CO1	Chalk/ Board/ Slides	T1, T2
5	L5	Mathematical Modelling	Mathematical Modelling of Translational Mechanical Systems – Part 1	CO1	Chalk/ Board/ Slides	T1, T2

6	L6	Mathematical Modelling	MathematicalModellingofTranslationalMechanicalSystems – Part2	CO1	Chalk/ Board/ Slides	T1, T2
7	L7	Mathematical Modelling	Mathematical Modelling of Translational Mechanical Systems – Part3	CO1	Chalk/ Board/ Slides	T1, T2
8	L8	Mathematical Modelling	Mathematical Modelling of Rotational Mechanical Systems	CO1	Chalk/ Board/ Slides	T1, T2
9	L9	Electrical Analogy of Mechanical System	Force Voltage Analogy		Chalk/ Board/ Slides	T1, T2
10	L10	Electrical Analogy of Mechanical System	Force Current Analogy	CO1	Chalk/ Board/ Slides	T1, T2
11	L11	Block Diagram Reduction	Block Diagram Reduction Rules	CO1	Chalk/ Board/ Slides	T1, T2
12	L12	Block Diagram Reduction	Block diagram reduction Problems – Part 1	CO1	Chalk/ Board/ Slides	T1, T2
13	L13	Block Diagram Reduction	Block diagram reduction Problems – Part 2	CO1	Chalk/ Board/ Slides	T1, T2
14	L14	Signal Flow Graphs	Signal Flow Graph, Loop, Path, Mason's Gain Formula	CO1	Chalk/ Board/ Slides	T1, T2
15	L15	Signal Flow Graphs	Solving problems based on Signal Flow Graph	CO1	Chalk/ Board/ Slides	T1, T2
16	L16	Self Study	DC Motor and AC Servo motor	CO1	Chalk/ Board/ Slides	T1, T2
		L	Module 1 completed		· ·	

Module: 2TIME RESPONSE ANALYSIS

SI. No	Session no	Lesson Title	Topics	Course Outcome Number	Delivery Mode	Reference
1	L17	Time Response	Standard Test Signals, Order and Type of a System, Unit Step, Unit Impulse Response of First Order System	CO2	Chalk/ Board/ Slides	T1, T2
2	L18	Time Response	Unit Ramp Response of a First Order System, Numerical based on time response	CO2	Chalk/ Board/ Slides	T1, T2

3	L19	Time response of Second Order System	Second Order System, Damping- Underdamped, Critically damped, Undamped, Overdamped second order system	CO2	Chalk/ Board/ Slides	T1, T2
4	L20	Time response of second order system	Impulse Response of a second order undamped, Critically damped and underdamped System	CO2	Chalk/ Board/ Slides	T1, T2
5	L22	Time response of second order system	Step Response of a Second order Undamped and Underdamped System	CO2	Chalk/ Board/ Slides	T1, T2
6	L23	Time response of second order system	Time Domain Specifications: Peak Time, Rise Time, Maximum Overshoot, Settling Time	CO2	Chalk/ Board/ Slides	T1, T2
7	L24	Time response of second order system	Numerical based on Time domain Specifications	CO2	Chalk/ Board/ Slides	T1, T2
8	L25	Time response of second order system	Numerical based on Time domain Specifications	CO2	Chalk/ Board/ Slides	T1, T2
9	L26	Steady State Error	Steady State Error: Static Error Constants: Position Error Constant, Velocity Error Constant, Acceleration Error Constant	CO2	Chalk/ Board/ Slides	T1, T2
10	L27	Steady State Error	Numerical Based on Steady State Error	CO2	Chalk/ Board/ Slides	T1, T2
11	L28	Revision	Revision for Mid Term Examination			
12	L29	Experiential Learning Topics	Time Response of Systems: Verification Using MATLAB	CO2	MATLAB	
		Self-Learning Topic	Controller Types			T1, T2
	L		Module 2 completed	1		

Module: 3FREQUENCY DOMAIN ANALYSIS AND STABILITY

SI. No	Session no	Lesson Title	Topics	Course Outcome Number	Delivery Mode	Reference
1	L30		Discussion of Mid Term Examination			
2	L31	Stability of Control Systems	BIBO Stability: Location of Poles and Stability, Routh Hurwitz Criterion	CO3	Chalk/ Board/ Slides	T1, T2
3	L32	Stability of Control Systems	Routh HurwitzCriterion : Special Cases	CO3	Chalk/ Board/ Slides	T1, T2
4	L33	Stability of Control Systems	Numerical of RH Criterion	CO3	Chalk/ Board/ Slides	T1, T2
5	L34	Root Locus	Relative Stability: What is root locus? Rules for construction of root locus	CO3	Chalk/ Board/ Slides	T1, T2
6	L35	Root Locus	Rules for construction of root locus continued	CO3	Chalk/ Board/ Slides	T1, T2
7	L36	Root Locus	Root Locus :Construction Examples	CO3	Chalk/ Board/ Slides	T1, T2
8	L37	Root Locus	Root Locus :Construction Examples	CO3	Chalk/ Board/ Slides	T1, T2
9	L38	Frequency Response Specifications	Gain Margin, Phase Margin, Bandwidth, Resonant Peak, Resonant Frequency	CO3	Chalk/ Board/ Slides	T1, T2
10	L39	Bode Plot	Introduction to Bode Plot: Single Pole at Origin, Single Zero at Origin, Multiple Poles and Zeros at Origin, Simple Pole not at origin, Simple Zero not at origin. Repeated Poles and Zeros not at origin	CO3	Chalk/ Board/ Slides	T1, T2
11	L40	Bode Plot	Construction of Bode Plot Examples: Gain Margin and Phase Margin from Bode Plot	CO3	Chalk/ Board/ Slides	T1, T2
12	L41	Bode Plot	Bode Plot Construction Examples	CO3	Chalk/ Board/ Slides	T1, T2

13	L42	Polar Plot	Gain and magnitude Form, Plotting a polar plot	CO3	Chalk/ Board/ Slides	T1, T2	
14	L43	Nyquist Stability Criterion	Principle of Arguments: Developing Nyquist Stability Criterion	CO3	Chalk/ Board/ Slides	T1, T2	
15	L44	Nyquist Stability Criterion	Numerical Based on Nyquist Stability Criterion – 1	CO3	Chalk/ Board/ Slides	T1, T2	
16	L45	Nyquist Stability Criterion	Numerical Based on Nyquist Stability Criterion – 2	CO3	Chalk/ Board/ Slides	T1, T2	
17	L46	Nyquist Stability Criterion	Numerical Based on Nyquist Stability Criterion – 3	CO3	Chalk/ Board/ Slides	T1, T2	
18	L47	Experiential Learning Topics:	Drawing root locus and Bode plot using MATLAB	CO3	MATLAB		
	Module 3 completed						

Module: 4INTRODUCTIONTO MODERN CONTROL THEORY

SI. no	Session no	Lesson Title	Topics	Course Outcome Number	Delivery Mode	Reference
1	L48	Concept of State Space	Concept of state, state variables and state model with an example of RLC circuit	CO4	Chalk/ Board/ Slides	T1, T2
2	L49	Modelling of Electrical Circuits in State Space	Modelling of Electrical Circuits in State Space	CO4	Chalk/ Board/ Slides	T1, T2
3	L50	Modelling of Mechanical Systems in State Space	Modelling of Mechanical Systems in State Space	CO4	Chalk/ Board/ Slides	T1, T2
4	L51	State Space Modelling	State Space Modelling of Systems given as a differential equation or transfer function	CO4	Chalk/ Board/ Slides	T1, T2

5	L52	State Space Modelling	Transfer function form a State Space Model	CO4	Chalk/ Board/ Slides	T1, T2
6	L53	Solution of State Space Equation	State Transition Matrix, Properties of STM	CO4	Chalk/ Board/ Slides	T1, T2
7	L54	Solution of State Space Equation	Solution using STM	CO4	Chalk/ Board/ Slides	T1, T2
8	L55	Controllability and Observability	Kalman's Test for Controllability and Observability	CO4	Chalk/ Board/ Slides	T1, T2
9	L56	Controllability and Observability	Numericals based on Observability and Controllability	CO4	Chalk/ Board/ Slides	T1, T2
10	L57	Experiential Learning Topics:	Using MATLAB to find the response of a system represented by state space model	CO4	MATLAB	
11	L58	Experiential Learning Topics:	Using MATLAB to find the response of a system represented by state space model	CO4	MATLAB	
12	L59	Revision				

Topics relevant to "SKILL DEVELOPMENT": Laplace Transform, Routh-Hurwitz Criterion, Bode Plot, Nyquist Plot, State-space techniques for **Skill Development** through **Problem Solving methodologies**. This is attained through the **Assignment** as mentioned in the assessment component.

ASSESSMENT SCHEDULE:

SI. no	Assessment type	Contents	Cours e outco me Num ber	Durat ion In Minut es	Mar ks	weight age	Venue,D ATE &TIME
1.	Assignment-1	Module-1	CO1	30 minute	15	7.5%	

2.	MidTermExaminat ion	Module-1 and 2	CO1, CO2	90 minute s	60	30%	03/11/202 2 - 07/11/202 2
3.	Assignement2	Module-3	CO3	30 minute s	15	7.5%	
4.	Assignment Review of digital / e-resourcesfrom Pres. Univ. linkgiven in the References Section -(Mandatory to submitscreenshota ccessing digital resource. Otherwiseitwill not beevaluated)	Paper 1: https://ieeexplore.ieee.org/document/50 07732 Paper 2: https://ieeexplore.ieee.org/abstract/docu ment/8232032 Paper 3: https://ieeexplore.ieee.org/document/96 59658 Paper 4: https://ieeexplore.ieee.org/document/14 7841	_		10	5%	
5.	End Term Final Examinations	Module-1,2,3 & 4	CO1- CO4	180 hours	100	50%	05/01/202 3 - 25/01/202 3

COURSE CLEARANCE CRITERIA:

- Minimum of 75% Attendance is must to take up the End Term Examination.
- Minimum of 40% score is must in internal assessment.
- Minimum of 30% in the End Term Examination.
- The Student must have secured a minimum of 40% of the AGGREGATE of the marks/ weightage of the components of the Continuous Assessments and the End Term Final Examination in the concerned Course.
- Make up policy is applicable only as per academic regulation
- There will be no make-up for ASSIGNMENT and QUIZ.

REGISTRAR Registra

	MethodofAssessment						
	ComponentsofContinuousA ssessments	Weightage(% of TotalMark s)	DurationofAsses sm ent				
1.	MidTerm Examination	30%	1.5hour				
2.	ThisComponentofcontinuousassessmentshallconsistofatleastTWO(02)of thefollowing: (1) Assignment(s) (2) Quiz	20%	NA				
3.	EndTermFinalExaminations	50%	3hours				
	Total	100%					

MAKEUP POLICY:

If the student misses an evaluation component, he/she may be granted a make-up. In case of an absence that is foreseen, make-up request should be personally made to the Instructor-in-Charge, well ahead of the scheduled evaluation component. Reasons for unanticipated absence that qualify a student to apply for make-up include medical emergencies or personal exigencies. In such an event, the student should contact the Instructor-in-Charge as soon as practically possible.

CONTACT TIMINGS FOR ANY DISCUSSIONS:

Interested students may contact the Instructor In-charge during the student free Hour when the Instructor is free. The Time table of the instructor will be shared with students

SAMPLE THOUGHT PROVOKING QUESTIONS

SI. No	QUESTION	MARKS	COURSE OUTCOME NO.	BLOOM' S LEVEL
	Block diagram reduction is an essential method, which can be			
	used to represent a complex system using a single block. If the		CO 1	Comprehe
1	block diagram is converted into a Signal Flow Graph which is	10 M		
1	the graphical representation of the complete block diagram, it	10 101	01	nsion
	becomes easy to find the closed loop transfer function using			
	Mason's Gain Formula. Consider the following block diagram			

SI. No	QUESTION	MARKS	COURSE OUTCOME NO.	BLOOM' S LEVEL
2	Suppose you are a control engineer in Kochi Refineries Limited. You are working with the temperature control of a boiler. $ \begin{array}{c} \hline $	10 M	CO2	Comprehe
3	Mr. Suraj is analyzing a certain system shown below. $R(s) \longrightarrow K \longrightarrow s+2 \ s^{s} + ps^{2} + 3s + 2 \longrightarrow C(s)$ He performed some experiments on the system and observed that the system is oscillating at a frequency of 2 rad/s. Help him deduce the value of K and p	10 M	CO3	Comprehe nsion
4	Mr. Kinto is given a task of modelling a system in matrix form, whose differential equation is given as $\frac{d^2y(t)}{dt^2} + 7\frac{dy(t)}{dt} + 12y(t) = 3x(t)$	10 M	CO4	Comprehe nsion
		REGIST	RAR	

Here $x(t)$ is the input and $y(t)$ is the output. Identify the		
modelling to be used and hence model the system in that form.		
Now his Professor asked him to analyze the stability of the		
system by obtaining the poles of the system by finding the		
transfer function from this particular model. Deduce the		
transfer function and write the poles of the system. Is the		
system STABLE?		
Now the Professor wanted him to apply state feedback to meet		
Now the Professor wanted min to upply state recuback to meet		
certain criteria. In order to do so, the system should be		
controllable and observable. Help Mr. Rinto by checking		
whether the system is controllable and observable.		

Target set for course Outcome attainment:

Sl. No:	C.O. No.	Course Outcomes	Target set for attainment in percentage
01	CO 1	Describe various systems and their representations using Block diagrams and Signal Flow graphs.	50%
02	CO 2	Employ time domain analysis to determine the transient performance parameters of the system	50%
03	CO 3	Explain the system stability in the frequency domain	50%
04	CO 4	Identify the need of State space representation	50%

Signature of the course Instructor

This course has been duly verified Approved by the D.A.C.

Signature of the Chairperson D.A.C.

Course Completion Remarks & Self-Assessment. [This has to be filled after the completion of the course]

[Please mention about the course coverage details w.r.t. the schedule prepared and implemented. Any specific suggestions to incorporate in the course content. Any Innovative practices followed and its experience. Any specific suggestions from the students about the content, Delivery, Evaluation etc.]

Sl.no.	Activity	Scheduled Date	Completion	Actual Date	Completion	Remarks
					REGISTRAR	Registrar
						A A

	As listed in the course Schedule	
-		
1	Over View of the course	
2	Module : 01	
3	Module: 02	
4	Assignment	
5	Mid Term Exam	
6	Module:03	
7	Module:04	
8	Quiz	

Any specific suggestion/Observations on content/coverage/pedagogical methods used etc.:

Course Outcome Attainment:

Sl.no	C.O.	Course Outcomes	Target set for	Actual C.O.	Remarks on	
	No.		attainment in	Attainment	attainment	
			percentage		&Measures to	
				In Percentage	enhance the	
					attainment	
01		Describe various systems and their				
	CO 1	representations using Block diagrams	50%			
		and Signal Flow graphs.				
02		Employ time domain analysis to				
	CO 2	determine the transient performance	50%			
		parameters of the system				
03	CO 3	Explain the system stability in the	50%			
	005	frequency domain	5070			
04	CO 4	Identify the need of State space	50%			
		representation	5070			

Name and signature of the Faculty member:

D.A.C. observation and approval:

REGISTRAR

BLOOM'S TAXONOMY

Learning Outcomes Verbs at Each Bloom Taxonomy Level to be used for writing the course Outcomes.

Cognitive Level	Illustrative Verbs	Definitions
Knowledge	arrange, define, describe, duplicate, identify, label, list, match, memorize, name, order, outline, recognize, relate, recall, repeat, reproduce, select, state	remembering previously learned information
Comprehension	classify, convert, defend, discuss, distinguish, estimate, explain, express, extend, generalize, give example(s), identify, indicate, infer, locate, paraphrase, predict, recognize, rewrite, report, restate, review, select, summarize, translate	grasping the meaning of information
Application	apply, change, choose, compute, demonstrate, discover, dramatize, employ, illustrate, interpret, manipulate, modify, operate, practice, predict, prepare, produce, relate schedule, show, sketch, solve, use write	applying knowledge to actual situations
Analysis	analyze, appraise, breakdown, calculate, categorize, classify, compare, contrast, criticize, derive, diagram, differentiate, discriminate, distinguish, examine, experiment, identify, illustrate, infer, interpret, model, outline, point out, question, relate, select, separate, subdivide, test	breaking down objects or ideas into simpler parts and seeing how the parts relate and are organized
Synthesis	arrange, assemble, categorize, collect, combine, comply, compose, construct, create, design, develop, devise, explain, formulate, generate, plan, prepare, propose, rearrange, reconstruct, relate, reorganize, revise, rewrite, set up, summarize, synthesize, tell, write	rearranging component ideas into a new whole
Evaluation	appraise, argue, assess, attach, choose, compare, conclude, contrast, defend, describe, discriminate, estimate, evaluate, explain, judge, justify, interpret, relate, predict, rate, select, summarize, support, value	making judgments based on internal evidence or external criteria

REGISTRAR Registra

SCHOOL of ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Year: 2022-2023 (Odd)	Semester: Semester V (B. Tech.)	Section: 5ECE-01
Course Title	: Control Systems	
Course Code	: ECE3007	
Type of Skill	: Skill Development	
Type of Activity	: Problem Solving	
Instructor in Charge	: Mr. Tony Aby Varkey M	
Instructor for Section	: Mr. Tony Aby Varkey M	

Details about the activity : This is an assignment where in the student have to solve the question using pen and paper using the methods discussed in class.

In question 1, the student is supposed to find the transfer function of the electrical system with the element values given to him/her. Then he/she should simulate the obtained transfer function in MATLAB® to obtain the step response of the system. Then the student is supposed to wire the circuit in NI MULTISIM Live® and find the transient response for a dc voltage as input and verify whether both the simulations produce the same output. The tasks to be done are given in detail in the question itself.

In question 2, the student is supposed to find the transfer function of the given translational mechanical system and hence simulate the transfer function in MATLAB® to obtain the step response.

Assignment No: 01 Submit on or before 11:59 pm, 06/10/2022 (CAMU and Teams) Hardcopy to be submitted on 07/10/2022 in class

ECE3007 Control Systems

Question1: Consider the circuit shown below

The values of L_1 , L_2 , C, and R are given in the table in the next page. Choose accordingly.

Task 1: Draw the circuit replacing the values of L_1 , L_2 , C, and R

Task 2: Find the transfer function of the circuit

Task 3: Simulate the circuit in NI MULTISIM Live and plot the output when the input is 1 V dc.[Make sure you use a good time step and final time]

Task 4: Using the transfer function that you found in task 3, find the step response of the system using MATLAB. The time axis for both NI MULTISIM and MATLAB should be the same

Note: The answer should be written neatly. Use pencil and scale to draw the circuit. Each page should have your register number and name. Scan the written part neatly. The screen shot of the MULTISIM live should be proper with the file name as register number and inside the circuit your name and register number should be present. The link to the simulation should be given in the submission. You have to come and show me the simulation in person.

The MATLAB Code should be like this

clc; clear; close all; diary Circuit1 disp('NAME: ') disp('ROLL NO: ') disp('SEMESTER AND SECTION: ') Date_Time = datestr(cputime)

Your code here

diary off

Sl. No:	Reg No:	Name of Student		<i>L</i> ₂	С	R
1	20201ECE0001	BANGARU VIGNESH	1	2	3	9
2	20201ECE0002	DHEERAJ M G	2	4	3	8
3	20201ECE0004	JAHNAVI N	3	6	3	7
4	20201ECE0005	M MANOJ KUMAR	4	8	3	6
5	20201ECE0006	RITESH POLE S	5	1	3	5
6	20201ECE0007	CHOWDAM UDAY	6	3	4	4
7	20201ECE0008	SUMANTH REDDY M S	7	5	4	3
8	20201ECE0010	ARUN KRISHNA A	8	7	4	2
9	20201ECE0011	CHIRAG V	9	9	4	1
10	20201ECE0012	GUNDU HARI KRISHNA REDDY	1	4	4	5
11	20201ECE0013	KUCHI NITHIN	2	6	5	6
12	20201ECE0014	GANGAVARAM DWARAKANATHA REDDY	3	8	5	7
13	20201ECE0016	HARSHITH R PRASAD	4	1	5	3
14	20201ECE0017	RACHANA SU	5	3	5	2
15	20201ECE0018	GUDDETI UDAY KIRAN REDDY	6	5	5	1
16	20201ECE0019	PRAGATHI S BHANDARE	7	2	6	6
17	20201ECE0023	DAGGUPATI NITHISH KUMAR	8	9	6	3
18	20201ECE0024	KASAVAJJALA LAKSHMI SAHITHI	9	1	6	8
19	20201ECE0025	N VINUTHA SREE	1	3	6	2
20	20201ECE0026	MUTTE UNNATI	2	5	6	4
21	20201ECE0027	ALURU HEMANTH ROYAL	3	7	7	1
22	20201ECE0028	YOGESH KONDAPPA	4	9	7	4
23	20201ECE0029	ABHAY SURYA R N	5	1	7	6
24	20201ECE0032	JANAGANI THARUN	6	3	7	3
25	20201ECE0034	SAHANA	7	5	7	6
26	20201ECE0035	CHARAN H R	8	7	8	2
27	20201ECE0036	ЈҮОТНІКА М	9	1	8	9
28	20201ECE0037	J SHYAM DIVAS	1	3	8	4
29	20201ECE0038	CHETHAN KUMAR U	2	5	8	5
30	20201ECE0039	SHARATH KUMAR S	3	7	4	1
			R	EGISTRAR	Registrar	A REAL

Sl. No:	Reg No:	Name of Student	L ₁	L_2	С	R
31	20201ECE0040	PALAVARA SANDEEP	4	9	4	2
32	20201ECE0041	SREEJA S NAIR	5	2	4	5
33	20201ECE0042	LIKITH D (CR)	6	4	1	3
34	20201ECE0043	NAMITHA V KOTUR	7	6	4	5
35	20201ECE0044	BOYILLA VENKATA RAGHU VIKAS REDDY	8	8	4	6
36	20201ECE0045	PUTHA VENKATA KARTHIK REDDY	9	2	2	2
37	20201ECE0046	CHILAKALA RADHAKIRAN	1	7	2	6
38	20201ECE0047	CHAKALI BABU KIRAN	2	8	2	5
39	20201ECE0049	NANDAKISHORE S	2	4	3	6
40	20201ECE0050	NEHA.M.JAGADISH	3	6	5	2
41	20201ECE0052	DASARI DAVID PRABHU	4	8	7	4
42	20201ECE0054	N BHARATH REDDY	5	2	9	7
43	20201ECE0056	AANANDALA LAXMINIVAS	6	1	1	9
44	20201ECE0057	POLEPALLI VINAY KUMAR	7	3	2	3
45	20201ECE0058	DILEEP N	8	5	4	5
46	20201ECE0059	KODURU SHIREESHA	9	7	6	1
47	20201ECE0060	T MADHAN MOHAN	1	2	8	2
48	20201ECE0061	DIKSHA KARABASAPPA HALAVAGALI	5	4	2	6
49	20201ECE0062	MACHINA SUDEEP KUMAR	3	1	4	3
50	20201ECE0063	AARYA ANIL KATIWALE	7	3	3	7
51	20201ECE0064	YEDDULA NAVYA	2	6	1	8
52	20211LEC0001	ASHA M	6	2	5	3
53	20211LEC0002	DIGUVINTI GOVARDHAN REDDY	4	3	7	4
54	20211LEC0004	VED PRAKASH SINGH	8	1	2	1
55	20211LEC0005	NAGI REDDY VAMSIDHAR REDDY	2	1	3	2
56	20211LEC0006	SHAIK ABDUL VASEEM BASHA	1	2	4	8
57	20211LEC0007	SIRIPI REDDY HEMANTH REDDY	3	2	7	6
58	20211LEC0008	T SAGAR	6	2	3	4
59	20211LEC0009	RAMYASHREE G	1	8	7	3

REGISTRAR

<u>Question 2:</u> For the mechanical system shown below, find the transfer function Girls find $\frac{X_1(s)}{F(s)}$ and draw the force voltage analogous circuit [Proper analysis] Boys find $\frac{X_2(s)}{F(s)}$ and draw the force current analogous circuit [Proper analysis]

Extra Credit ©©© : Simulate the transfer function obtained in MATLAB and hence plot the displacement and velocity of the concerned mass when a unit step is applied

SCHOOL OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

ASSIGNMENT 1

STUDENT DETAILS

Name: Mutte Unnati

Roll Number: 20201ECE0026

Section: 5ECE1

Branch: Electronics and Communication Engineering

Course: Control Systems

Course Code: ECE3007

Faculty-In charge: Mr. Tony Aby Varkey M Sir

Maria

Scanned with OKEN Scanner

Name:-Mutte Unnati Roll no:- 20201ECE0026

Name: Mutte Unuali
Rollend: - 20201E(ED026
(6(
$$T_{2}(5) - T_{1}(5)$$
) + $H_{2}(5) + 5\delta(T_{2}(5)) = 0$
 $Y_{65} T_{2}(5) - Y_{65} T_{1}(5) + H_{2}(5) + 5\delta(T_{2}(5)) = 0$
($H + 5s + Y_{65} T_{2}(5) - Y_{55} T_{1}(5) = 0$
matrix form
 $\begin{bmatrix} 2s + Y_{65} & -Y_{65} \\ -Y_{65} & 4 + 55 + Y_{65} \end{bmatrix} \begin{bmatrix} T_{1}(5) \\ T_{2}(5) \end{bmatrix} = \begin{bmatrix} Vin(5) \\ 0 \end{bmatrix}$
using bramers sulle
 $\mathbf{X} = \begin{bmatrix} 25 + Y_{65} & -Y_{65} \\ -Y_{65} & H + 55 + Y_{65} \end{bmatrix} = \begin{bmatrix} 25 + Y_{65} & -Y_{65} \\ -Y_{65} & H + 55 + Y_{65} \end{bmatrix} = \begin{bmatrix} 25 + Y_{65} & -Y_{65} \\ -Y_{65} & H + 55 + Y_{65} \end{bmatrix} = \begin{bmatrix} 25 + Y_{65} & (H + 55 + Y_{65}) - Y_{36} + 25 \\ -Y_{65} & H + 55 + Y_{65} \end{bmatrix} = \begin{bmatrix} 25 + Y_{65} & (H + 55 + Y_{65}) - Y_{36} + 25 \\ -Y_{65} & H + 55 + Y_{65} \end{bmatrix} = \begin{bmatrix} 25 + Y_{65} & Y_{65} + 25 \\ -Y_{65} & 265^{2} \\ -Y_{65} & 265^{2} \\ -Y_{65} & 0 \end{bmatrix}$
 $\Delta_{2} = Vin(5) Y_{65}$
 $T_{2}(5) = \frac{A2}{D} = \frac{Vin(5) Y_{65}}{60 + 5^{2} + 15 + H} \\ T_{2}(5) = \frac{A2}{D} = \frac{Vin(5) Y_{65}}{60 + 5^{2} + 15 + H} \\ Y_{0}(5) = \frac{55 + 125 + 125 + H}{60 + 5^{2} + 15 + H} \\ Y_{0}(5) = \frac{55 + 125 + 125 + H}{60 + 5^{2} + 15 + H} \\ Y_{0}(5) = \frac{55 + 125 + 125 + H}{60 + 5^{2} + 15 + H} \\ Y_{0}(5) = \frac{55 + 125 + 125 + H}{60 + 5^{2} + 15 + H} \\ Y_{0}(5) = \frac{55 + 125 + 125 + H}{60 + 5^{2} + 15 + H} \\ Y_{0}(5) = \frac{55 + 125 + 125 + H}{60 + 5^{2} + 15 + H} \\ Y_{0}(5) = \frac{55 + 125 + 125 + H}{60 + 5^{2} + 15 + H} \\ Y_{0}(5) = \frac{55 + 125 + 125 + H}{60 + 5^{2} + 15 + H} \\ Y_{0}(5) = \frac{55 + 125 + 125 + H}{60 + 5^{2} + 15 + H} \\ Y_{0}(5) = \frac{55 + 125 + 125 + H}{60 + 5^{2} + 15 + H} \\ Y_{0}(5) = \frac{55 + 125 + 125 + H}{60 + 5^{2} + 15 + H} \\ Y_{0}(5) = \frac{55 + 125 + 125 + H}{60 + 5^{2} + 15 + H} \\ Y_{0}(5) = \frac{55 + 125 + 125 + H}{55 + 15 + H} \\ Y_{0}(5) = \frac{55 + 125 + 125 + H}{55 + 15 + H} \\ Y_{0}(5) = \frac{55 + 125 + 125 + H}{55 + 15 + H} \\ Y_{0}(5) = \frac{55 + 125 + H}{55 + 15 + H} \\ Y_{0}(5) = \frac{55 + 125 + 125 + H}{55 + 15 + H} \\ Y_{0}(5) = \frac{55 + 125 + 125 + H}{55 + 15 + H} \\ Y_{0}(5) = \frac{55 + 125 + 125 + H}{55 + 15 + 15 + H} \\ Y_{0}(5) = \frac{55 + 125 + 125 + H}{55 + 15 + 15 + H} \\ Y_{0}(5) = \frac{55 + 125 + 125 + H}{55 + 15 + 15 + 15 + 15 + 1$

/

Name: Mutte Unnaté Roll no: 2020IECE0026

Scanned with OKEN Scanner

```
Matlab code:-
clc;
clear;
close all;
diary circuit
disp ('NAME: Mutte Unnati')
disp ('ROLL NO: 2020/ECEODRE')
disp ('SEMESTER AND SECTION: SECEN')
Date_Time = datestre (cputime)
num = [0, 0, 5, 0];
den = [60, 48, 7, 4];
H = tf (num, den);
t= 0:0.0001:450;
Vo = step(H,t);
plot (t, vo, 'linewidth', 2);
grid;
relabel ('Teme, t(s)');
(abel ( 'V_O(+) (V)');
tetle ('The output voltage');
diary off
```


Scanned with OKEN Scanner

O Scanned with OKEN Scanner

Name: - Mutte Unnati
Roll no: - 2020IE (E0026
For the mechanical system shown below, find
the triansfor function
$$\underline{X_1(S)}$$
 and draw the
porce voltage analogous circuit.
 $F(S)$ and $F(S)$
 $B_1 = 2 N \cdot S|_{M}$ $M_2 = \begin{bmatrix} F(S) \\ F(S) \\$

Name: Mutte Ubmati
Roll no: 2020IECE Double
Roll no: 2020IECE Double
Roll no: 2020IECE Double
(2)
$$S^2 + 3.5 + 6$$
) $X_1(5) - 20 \times X_2(5) = 0$
Free body deagram of marks Ma
 $B_1 d_{3(U)} \leftarrow M_{4(U)} \to M_{4} d^2 x_{2(U)} \to dt^2$
 $B_2 (\frac{d_{3(U)} - q_{4(U)}}{dt} \to M_{4} d^2 x_{2(U)} \to dt^2$
 $B_3 (\frac{d_{3(U)} - q_{4(U)}}{dt} \to B_2 (\frac{d_{3(U)}}{dt} - \frac{dx_{4(U)}}{dt}) \neq K_2 (x_{2(U)} - x_{3(U)}) \to dt^2$
 $F(t) - B_1 dx_{3(U)} \to B_2 (\frac{dx_{2(U)}}{dt} - \frac{dx_{4(U)}}{dt}) \neq K_2 (x_{2(U)} - x_{3(U)}) \to dt^2$
 $F(t) - B_1 dx_{3(U)} + B_2 (\frac{dx_{2(U)}}{dt} - \frac{dx_{4(U)}}{dt}) \neq K_2 (x_{2(U)} - x_{3(U)}) = f(t)$
 $dt^2 = dt$
 $dt^2 = dt$
 $dt^2 = dt$
 $dt^2 = dx_{4(U)} + B_2 (\frac{dx_{2(U)}}{dt} - \frac{dx_{4(U)}}{dt}) + K_2 (x_{2(U)} - x_{3(U)}) = f(t)$
 $dt^2 = dx$
 $dt = dx_{4(U)} + 2 \frac{dx_{3(U)}}{dt} - 2 \frac{dx_{4(U)}}{dt} + 6x_{2(U)} - 6x_{3(U)} = f(t)$
 $h \frac{d^3x_{3(U)}}{dt^2} + h \frac{dx_{3(U)}}{dt} - 2 \frac{dx_{4(U)}}{dt} + 6x_{2(U)} - 6x_{3(U)} = f(t)$
 $h \frac{d^3x_{3(U)}}{dt^2} + h \frac{dx_{3(U)}}{dt} - 2 \frac{dx_{4(U)}}{dt} + 6x_{3(U)} - 6x_{3(U)} = f(t)$
 $h \frac{d^3x_{3(U)}}{dt^2} + h \frac{dx_{3(U)}}{dt} - 2 \frac{dx_{4(U)}}{dt} + 6x_{2(U)} - 6x_{3(U)} = f(t)$
 $h \frac{d^3x_{3(U)}}{dt^2} + h \frac{dx_{3(U)}}{dt} - 2 \frac{dx_{4(U)}}{dt} + 6x_{3(U)} - 6x_{3(X)} = F(t)$
 $h \frac{d^3x_{3(U)}}{dt^2} + h \frac{dx_{3(U)}}{dt} - 2 \frac{dx_{4(U)}}{dt} + 6x_{3(U)} - 6x_{3(X)} = F(t)$
 $h \frac{d^3x_{3(U)}}{dt^2} + h \frac{dx_{3(U)}}{dt} - 2 \frac{dx_{4(U)}}{dt} + 6x_{3(U)} - 6x_{3(X)} = F(t)$
 $h \frac{d^3x_{3(U)}}{dt} + h \frac{dx_{3(U)}}{dt} - 2 \frac{dx_{4(U)}}{dt} + 6x_{3(U)} - 6x_{3(X)} = F(t)$
 $h \frac{d^3x_{3(U)}}{dt} + h \frac{dx_{3(U)}}{dt} - 2 \frac{dx_{4(U)}}{dt} + 2 \frac{dx_{4(U)}}{dt^2} + \frac{dx_{4(U)}}{dt} - 2 \frac{dx_{4(U)}}{dt} + 2 \frac{dx_{4(U)}}{dt} - 2 \frac{dx_{4(U)}}{dt^2} + 2 \frac{dx_{4(U)}}{dt^2} + 2 \frac{dx_{4(U)}}{dt} + 2 \frac{dx_$

Name: - Mutti Unmati
Roll no: - 2020/ECE0026
10
$$\frac{d^2x_3(t)}{dt^2} + K_2(x_3(t) - x_2(t)) + B_3 dx_3(t) = 0$$

 $\frac{d^2x_3(t)}{dt^2} + 6x_3(t) - 6x_2(t) + 2 \frac{dx_3(t)}{dt} = 0$
 $\frac{d^2x_3(t)}{dt^2} + 2 \frac{dx_3(t)}{dt} + 6x_3(t) - 6x_2(t) = 0$
 $\frac{1}{4} \frac{d^2x_3(t)}{dt^2} + 2 \frac{dx_3(t)}{dt} + 6x_3(s) - 6x_2(s) = 0$
 $\frac{1}{4} \frac{d^2x_3(s)}{dt^2} + 2 \frac{dx_3(s)}{dt} - 6x_2(s) = 0$
 $\frac{1}{4} \frac{d^2x_3(s)}{dt^2} + 2 \frac{dx_3(s)}{dt} - 6x_2(s) = 0$
 $\frac{1}{4} \frac{d^2x_3(s)}{dt^2} + 2 \frac{dx_3(s)}{dt} - 6x_2(s) = 0$
 $\frac{1}{4} \frac{d^2x_3(s)}{dt^2} + 2 \frac{dx_3(s)}{dt} - 6x_2(s) = 0$
 $\frac{1}{6} \frac{d^2x_3(s)}{dt^2} + 2 \frac{dx_3(s)}{dt} - 6x_2(s) = 0$
 $\frac{1}{6} \frac{d^2x_3(s)}{dt^2} + 2 \frac{dx_3(s)}{dt} - 6 \frac{dx_3(s)}{dt}$

Name :-Muth Unmati
Roll no:-20201ECE0026

$$\Delta_{1} = (3 \wedge 5^{2} + 3 \wedge 5^{2} + 12 \wedge 5) F(5)$$

$$X_{1}(5) = \Delta_{1} = \frac{1}{100} (3 \wedge 5^{2} + 6 + 3) F(5)$$

$$X_{1}(5) = \Delta_{1} = \frac{1}{100} (3 \wedge 5^{2} + 6 + 3) F(5)$$

$$\frac{X_{1}(5)}{A} = \frac{2}{100} (3 \wedge 5^{2} + 6 + 3) F(5)$$

$$\frac{X_{1}(5)}{B} = \frac{2}{3} \wedge 5^{2} + 6 + 3$$

$$F(5) = \frac{2}{3} \wedge 5^{2} + 6 + 3$$

$$F(5) = \frac{2}{3} \wedge 5^{2} + 6 + 3$$

$$F(5) = \frac{2}{3} \wedge 5^{2} + 24 \wedge 5^{4} + 94 \wedge 5^{2} + 66 \wedge 5^{3} + 94 \wedge 5^{2} + 105 \wedge 5 + 54 + 1$$
The dorree-voltage analogous circuit for the given
methanical system
Consider the differential equations of masses M1, M2
and M3

$$M_{1} \frac{d^{2}x_{1}(t)}{dt^{2}} + B_{1} \frac{dx_{1}(t)}{dt} + B_{2} (\frac{dx_{1}(t)}{dt} - \frac{dx_{2}(t)}{dt}) + K_{1} \times (t) = 0$$

$$\frac{d^{2}x_{2}(t)}{dt^{2}} + B_{1} \frac{dx_{2}(t)}{dt} + B_{2} (\frac{dx_{1}(t)}{dt} - \frac{dx_{2}(t)}{dt}) + K_{3} (3(t) - x_{3}(t)) = M$$

$$M_{3} \frac{d^{2}x_{3}(t)}{dt^{2}} + K_{3} (x_{3}(t) - x_{3}(t)) + B_{3} \frac{dx_{3}(t)}{dt} + K_{3} (x_{3}(t) - x_{3}(t)) = M$$

$$M_{3} \frac{d^{2}x_{3}(t)}{dt^{2}} + K_{5} (x_{3}(t) - x_{5}(t)) + B_{3} \frac{dx_{3}(t)}{dt} = 0$$

$$M_{3} \frac{d^{2}x_{3}(t)}{dt^{2}} + K_{5} (x_{3}(t) - x_{5}(t)) + B_{3} \frac{dx_{3}(t)}{dt} = 0$$

$$M_{4} \frac{d^{2}x_{3}(t)}{dt^{2}} + K_{5} (x_{3}(t) - x_{5}(t)) + B_{3} \frac{dx_{3}(t)}{dt} + C_{1} q_{1}(t) = 0$$

$$M_{4} \frac{d^{2}x_{3}(t)}{dt^{2}} + K_{5} (\frac{dq_{2}(t)}{dt} - \frac{dq_{1}(t)}{dt}) + \frac{1}{c_{1}} q_{1}(t) = 0$$

$$dt^{2} \quad dt$$

$$Replace \quad A_{0}(t) = 1(t) \quad and \quad q(t) = 1(t) \quad dt$$

$$A_{1} \frac{d}{qt}, (t) + R_{4} l_{1}(t) + R_{2} (l_{1}(t) - l_{2}(t)) + \frac{1}{c_{1}} l_{1}(t) dt = 0$$

$$L_{2} \frac{d}{qt} t_{0}(t) + R_{1} l_{0}(t) + R_{2} (l_{2}(t) - l_{1}(t)) + \frac{1}{c_{1}} l_{1}(t) dt = 0$$

$$L_{2} \frac{d}{qt} t_{0}(t) + R_{1} l_{0}(t) + R_{2} (l_{2}(t) - l_{1}(t)) + \frac{1}{c_{1}} l_{1}(t) dt = 0$$

$$L_{2} \frac{d}{qt} t_{0}(t) + R_{1} l_{0}(t) + R_{2} (l_{2}(t) - l_{1}(t)) + \frac{1}{c_{2}} l_{0}(t) dt$$

$$K = 0$$

$$L_{2} \frac{d}{qt} t_{0}(t) + R_{1} l_{0}(t) + R_{2} (l_{2}(t) - l_{1}(t)) + \frac{1}{c_{2}} l_{0}(t) dt$$

$$K = 0$$

$$L_{3} \frac{d}{dt} t_{0}(t) + R_{3} (l_{3}(t) - l_{3}(t)) + \frac{1}{c_{2}} l_{0}(t) dt$$

$$K = 0$$

Scanned with OKEN Scanner

Course Code:	Course T Lines and	T <mark>itle:</mark> Transn d Waveguid	nission es	L- P- C	2			2	
ECE3009	1 ype of 0 & Theor	Course: Prog v only	gram Core		3	0		3	
Version	2.0	y only							
No.									
Course	The know	wledge of ve	ctor algebra	, basics of el	ectrical engi	neering, netv	vork theory	and	
Pre-	MATLA	B-SIMULIN	K software	e tool					
Anti-	NIL								
requisites									
Course	The cour	rse focuses	on various	types of tra	nsmission li	nes used in	daily life.	The course	
Descriptio	includes	stub imped	ance match	ing, transm	ission and r	eception of	high freque	ency waves	
n	through	co-axial c	able and	waveguide.	This cours	e lays a f	oundation	for many	
	commun	ication relat	ed courses l	ike satellite (communicat	ion, mobile c	ommunicat	ion, analog	
	and digit	al communi	cation etc.						
Course	The obje	ctive of the	course is to	familiarize t	the learners	with the con	cepts of Tr	ansmission	
Objective	Lines and	d Waveguid	es and attair	the <u>SKILL D</u>	EVELOPMEN	<u>T</u> through <u>PR</u>	OBLEM SOL	VING.	
Course	On succe	essful comple	etion of this	course the st	tudents shall	be able to:			
Outcomes	1. Discus	s the working	g of transmis	sion lines suc	ch as co-axial	cable and ass	sociated para	imeters	
	2.Comput	te the calcula	tions pertain	ing to stub in	npedance and	l its parameter	rs		
	3. Descril	be the working	ng of wavegu	ide such as r	ectangular w	aveguide and	associated p	arameters	
Course									
Content:	T	· ·	0. 1.	. 1 ()	• • • •	1.4			
Module 1	Transm	Assignme	Simulation	task (transm	ission lines a	nd its			
	Lines	III	parameters)					
	and its						13 Se	ssion	
	parame								
	ters								
Topics: Introduction	to Transm	ission lines	transmission	line narame	ters calculat	ion for co-av	ial cable. Tr	anomission	
line equation	to Transin is Concer	t and nume	rical on in	nut impedan	ce Reflection	coefficient	VSWR cl	ansinission	
impedance o	nen and sh	ort circuited	lines	put impedun	ce,remeenor	i coemercia,		laracteristic	
impedance, o	Stub		Simulation	task (stub in	npedance mat	ching			
	impeda	<u>.</u> .	parameters)	ipedunee ma	ennig			
Module 2	nce	Assignme	1	,			13 Se	ession	
	matchi	111							
Topica	ng								
Introduction	to stub in	mnedance m	natching sin	ole stuh im	nedance ma	tching and r	numerical d	ouble stub	
impedance m	atchingand	l numerical,	Smith chart	fundamentals	, construction	on of Smith c	hart, use of	Smith chart	
to solve stub	impedance	matching pr	oblems, Som	ne application	ns of transmis	sion lines			
						Simulation			
Module 3		Waveg	guide	Assig	nment	task(paramet	ters	13 Section	
				_		waveguide)	1	Session	
Topics:								1	
Introduction, properties and characteristics of waveguides, Applications of Waveguides, General approach to									
solve field inside waveguide, TM wave in rectangular waveguide, various TM modes, waveguide as a high pass									
The resonance of the second se									
List of Laboratory Tasks: Nil									
Targeted An	List of Laboratory Tasks: NII Targeted Application & Tools that can be used:								
Application	Area:Tele	communicati	on, Satellite	communicati	on, low and l	high frequence	y magnetic f	ĩeld	
transmission,	Wireless t	echnology, C	Optical comm	nunication.		James	SENCY UNIL		
Professional	lv Used Ha	ardware/Sof	Professionally Used Hardware/Software: Arduino/Raspherry Pi MATLAB/SIMULINK/Arduino/Python						

Text Book(s)

1. K. Giridhar, "Transmission Lines and Wave Guides", Pooja Publications, India, Fourth Edition.

Reference Book(s):

1. Pramanik, Ashutosh, "Electromagnetism – Theory and Applications", Prentice-Hall of India Private Limited, Second Edition.

Online Resources (e-books, notes, ppts, video lectures etc.):

- 1. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-013-electromagnetics-and-applications-fall-2005/lecture-notes/
- 2. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-776-high-speed-communication-circuits-spring-2005/lecture-notes/
- 3. https://presiuniv.knimbus.com/user#/home

E-content:

- H. He, B. Li and Y. Sun, "The study of different transmission lines in high speed optical module," 2014 15th International Conference on Electronic Packaging Technology, 2014, pp. 1052-1055, doi: 10.1109/ICEPT.2014.6922826. <u>https://ieeexplore.ieee.org/document/6922826</u>
- F. Olyslager, "Properties of and generalized full-wave transmission line models for hybrid (Bi)(an)isotropic waveguides," in IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 11, pp. 2064-2075, Nov. 1996, doi: 10.1109/22.543964. https://ieeexplore.ieee.org/document/543964
- W. J. Getsinger, "An introduction to microwave transmission lines," [1992] Proceedings of the 35th Midwest Symposium on Circuits and Systems, 1992, pp. 1016-1019 vol.2, doi: 10.1109/MWSCAS.1992.271122. https://ieeexplore.ieee.org/document/271122
- F. Distler, J. Schür and M. Vossiek, "In-depth characterization of a dielectric waveguide for mmW transmission line applications," 2018 IEEE 22nd Workshop on Signal and Power Integrity (SPI), 2018, pp. 1-4, doi: 10.1109/SaPIW.2018.8401671. https://ieeexplore.ieee.org/document/8401671

Topics relevant to "SKILL DEVELOPMENT": Transmission line parameters, Reflection coefficient, VSWR, Impedance Matching, Smith Chart, Waveguides for **Skill Development** through **Problem Solving** techniques. This is attained through assessment component mentioned in course handout.

Topics related to development of "FOUNDATION SKILLS": Fundamentals of various transmission lines and associated parameters

Topics related to development of "ENVIRONMENT AND SUSTAINABILITY": High frequency waves					
Catalogue	Dr. Rakesh Chowdhury				
prepared					
by					
Recommen					
ded by the	BOS Meeting NO: 15th, Dated BOS 28/07/2022				
Board of					
Studies on					
Date of	Academic Council Meeting No. 18th, Dated 03/08/22				
Approval					
by the					
Academic					
Council					

SCHOOL: Engineering DEPT.: ECE DATE OF ISSUE: 27/08/2022

ACA-2 [2022] COURSE HANDOUT

NAME OF THE PROGRAM	: B. Tech (ECE)
P.R.C.APPROVAL REF.	: PU/AC-18.4/ECE15/ECE/2022-24
SEMESTER/YEAR	: 5 th Semester/ 3 rd Year
COURSE TITLE & CODE COURSE CREDIT STRUCTURE	: Transmission Lines and Waveguides &ECE3009 : 3-0-0-3
CONTACT HOURS	: 45
COURSE INSTRUCTOR	: Sreenivasappa

PROGRAM OUTCOMES:

Graduates of the B. Tech. Program in Electronics and Communication Engineering will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

REGISTRAR

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

COURSE PREREQUISITES: The knowledge of vector algebra, basics of electrical engineering, network theory and MATLAB-SIMULINK software tool.

COURSE DESCRIPTION: The course focuses on various types of transmission lines used in daily life. The course includes stub impedance matching, transmission and reception of high frequency waves through co-axial cable and waveguide. This course lays a foundation for many communication related courses like satellite communication, mobile communication, analog and digital communication etc.

COURSE OBJECTIVES:

The objective of the course is to familiarize the learners with the concepts of Transmission Lines and Waveguides and attain the <u>SKILL DEVELOPMENT</u> through <u>PROBLEM SOLVING</u>.

COURSE OUTCOMES:

On successful completion of the course the students shall be able to:

CO1: Explain the working of transmission lines such as co-axial cable and associated parameters

CO2: Summarize the calculations pertaining to stub impedance and its parameters

CO3: Describe the working of waveguide such as rectangular waveguide and associated parameters

MAPPING OF C.O. WITH P.O.

[H-HIGH, M- MODERATE, L-LOW]

PO CO	1	2	3	7	12
1	Н	L	М		
2	Н			М	М
3	Н	М	Н	Н	

COURSE CONTENT (SYLLABUS):

Module: 1:Transmission Lines and its parameters:

Introduction to Transmission lines, transmission line parameters calculation for co-axial cable, Transmission line equations, Concept and numerical on input impedance, Reflection coefficient, VSWR, characteristic impedance, open and short circuited lines.

[13 hours] [Blooms' level selected: Knowledge]

Module: 2: Stub impedance matching:

REGISTRAR
Introduction to stub impedance matching, single stub impedance matching and numerical, double stub impedance matching and numerical, Smith chart fundamentals, construction of Smith chart, use of Smith chart to solve stub impedance matching problems, Some applications of transmission lines

[13 hours] [Blooms' level selected: Application]

Module 3:Waveguides:

Introduction, properties and characteristics of waveguides, Applications of Waveguides, General approach to solve field inside waveguide, TM wave in rectangular waveguide, various TM modes, waveguide as a high pass filter, Power transmission and attenuation, TE wave in rectangular waveguide, various TE modes, excitation of waveguides, waveguide terminations, introduction to waveguide resonators .

[12 hours] [Blooms' level selected: Comprehension]

SKILL SETS TO BE DEVLOPED:

- 1. An attitude of enquiry.
- 2. Confidence and ability to tackle new problems.
- 3. Ability to interpret events and results.
- 4. Ability to work as a leader and as a member of a team.
- 5. Assess errors in systems/processes/programs/computations and eliminate them.
- 6. Observe and measure physical phenomena.
- 7. Write reports.
- 8. Select suitable equipment, instrument, materials & software
- 9. Locate faults in system/Processes/software.
- 10. Manipulative skills for setting and handling systems/Process/Issues
- 11. The ability to follow standard /Legal procedures.
- 12. An awareness of the Professional Ethics.
- 13.Need to observe safety/General precautions.

14. To judge magnitudes/Results/issues without actual measurement/actual contacts

DELIVERY PROCEDURE (PEDAGOGY): All the Topics will be covered through Offline mode in Classroom. Assignment projects based on course contents will be given to the students.

Self-Learning topics: Calculations of R, L, G, C for a given co-axial cable, Impedance matching using lumped elements, TEM waveguide

Experiential Learning: Transmission line parameters measurement for 10m Flexible RG174 Coaxial Cable

REFERENCE MATERIALS: Textbooks, reference books, any other resources, like webpages.

(I) Text Book(s):

1. K. Giridhar, "Transmission Lines and Wave Guides", Pooja Publications, India, Fourth Edition.

(II) Reference book(s):

1. Pramanik, Ashutosh, "Electromagnetism – Theory and Applications", Prentice-Hall of India Private Limited, Second Edition.

(III) Class Notes/Online Resources

- 4. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-013-electromagnetics-and-applications-fall-2005/lecture-notes/
- 5. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-776-high-speed-communication-circuits-spring-2005/lecture-notes/

(IV) E-contents:

- H. He, B. Li and Y. Sun, "The study of different transmission lines in high speed optical module," 2014 15th International Conference on Electronic Packaging Technology, 2014, pp. 1052-1055, doi: 10.1109/ICEPT.2014.6922826. https://ieeexplore.ieee.org/document/6922826
- F. Olyslager, "Properties of and generalized full-wave transmission line models for hybrid (Bi)(an)isotropic waveguides," in IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 11, pp. 2064-2075, Nov. 1996, doi: 10.1109/22.543964. https://ieeexplore.ieee.org/document/543964
- W. J. Getsinger, "An introduction to microwave transmission lines," [1992] Proceedings of the 35th Midwest Symposium on Circuits and Systems, 1992, pp. 1016-1019 vol.2, doi: 10.1109/MWSCAS.1992.271122. https://ieeexplore.ieee.org/document/271122
- F. Distler, J. Schür and M. Vossiek, "In-depth characterization of a dielectric waveguide for mmW transmission line applications," 2018 IEEE 22nd Workshop on Signal and Power Integrity (SPI), 2018, pp. 1-4, doi: 10.1109/SaPIW.2018.8401671. https://ieeexplore.ieee.org/document/8401671

(V) GUIDELINES TO STUDENTS:

- The students are advised to be very much regular to the classes and sincerely attempt the learnings listed in the Pedagogical section.
- The students are advised to take down the notes legibly which serves as a firsthand information to study and revise lecture topics on day to day basis.
- The students are advised to visit the Microsoft teams on a regular basis to study the supporting materials shared by the course instructors.
- This course deals with the software development practices which and Embedded Developer has to adopt. The course if for LEARNING and being able to work in the domains identified here, and not just learning by rote and reproducing in exam. You need to understand how networking works and design networks, program for protocols and so on.
- The students are advised to watch the video lectures available online to understand and review the concepts delivered in the class as well as problems assigned for self-learning topics.

(VI) Presidency University Library Link: <u>https://presiuniv.knimbus.com/user#/home</u>

REGISTRAR

COURSE SCHEDULE:

Sl. No.	ACTIVITY	STARTING	CONCLUDING	TOTAL NUMBER
		DATE	DATE	OF PERIODS
1.	Program Integration			01
2.	Course Integration			01
3.	Module : 01			13
4.	Module 01 revision			01
5.	Assignment project			
6.	Module : 02			13
7.	Module 02 revision			01
8.	Mid Term Examination			NA
9.	Mid Term Paper Discussion			01
10.	Module:03			12
11.	Module 03 revision			02
12.	Assignment project			
13.	End Term Examination			
	·		TOTAL	45

SCHEDULE OF INSTRUCTION

SI. No	Session no/Date*	Lesson Title	Topics		Delivery Mode	Reference	
1.	L1		Program Integration	0			
2.	L2		Course Integration	and	10		
3.	L3	Introduction to	Introduction to Transmission lines	- Car	Board/PPT	T1 Ch 1	
	REGISTRAR Registrar						

ANGALOR

	Transmission lines					
4.	L4		Transmission fine general solution	1	Board/PPT	T1Ch 1
5.	L5	Types of transmission	Lossless transmission line	1	Board/PPT	T1Ch 1
6.	L6	lines	Lossy transmission lines	1	Board/PPT	T1Ch 1
7.	L7		Distortionlesstransmission line	1	Board/PPT	T1Ch 1
8.	L8		reflection factor, reflection loss	1	Board/PPT	T1Ch 1
9.	L9		insertion loss,	1	Board/PPT	T1Ch 1
10.	L10		VSWR		Board/PPT	T1Ch 1
11.	L11	Parameters of	Numerical on input impedance		Board/PPT	T1Ch 1
12.	L12	transmission lines	Open circuited lines		Board/PPT	T1Ch 1
13.	L13		short circuited lines		Board/PPT	T1Ch 1
14.	L14		Numerical		Board/PPT	T1Ch 1
15.	L15	-	Revision	1		
			Module 1 Concluded			
			Module 2			
		Stub Impedance	Introduction Stub Impedance			
16	L16	matching	matching	2	Board/PPT	T1Ch 2
10.	T 17		Smith chart construction constant		Dourd/111	T1 Ch 2
17.	LI/	_	resistance circle	2	Board/PPT	
10	L18	Introduction to Smith	Equations pertaining to constant	2	Doord/DDT	T1 Ch 2
10.	T 10	Chart		2	Board/FF1	T1 Ch 2
19.	L19		Constant reactance circle	2	Board/PPT	
20	L20		Equations pertaining to constant	2	Deerd/DDT	T1 Ch 2
20.			Impedance matching with reactive	2	Board/PP1	T1 Ch 2
21.	L21	Smith Chart for	elements		Board/PPT	_
22	L22	Impedance Matching	Numerical		Doord/DDT	T1 Ch 2
22.			Numerical		Board/PP1	T1 Ch 2
23.	L23	Smith Chart for Single	Single stub matching	2	Board/PPT	11 01 2
24.	L24	Stub	Numerical	2	Board/PPT	T1 Ch 2
25	L25					T1 Ch 2
25.		Smith Chart for Double	Double stub matching		Board/PP1	T1 Ch 2
26.	L26	Stub	Numerical		Board/PPT	11 Cli 2
27	L27	Smith Chart	Applications of Smith chart			T1 Ch 2
27.		Applications	II		Board/PP1	T1 Ch 2
28.	L28		Parameters of Smith chart		Board/PPT	11 Cli 2
			Assignment Project			
29.	L29		Revision	2		
30	130		Module 2 Concluded			
50.	L30		Module 3			
31.	L31	Introduction	Introduction to waveguide	3	Board/PPT	T1Ch 4
	T 32	Properties	properties and characteristics of			
32.	1.54		waveguides,	3	Board/PPT	T1Ch 4
33	L33	Application of Maxwell's equation	Application of Maxwell's equation to the rectangular waveguide	03	Board/PPT	T1Ch 4
55.	т э л		TM wave in rectangular			
34.	L34	Rectangular waveguide	waveguide	Sam	Board/PPT	T1Ch 4
35.	L35		various TM modes 🥏	REGISTRAR	Board/PPT	T1Ch 4

36.	L36	L36 Wa	aveguide as high pass filter	3	Board/PPT
37.	L37	L37 TE	wave in rectangular waveguide		Board/PPT
38.	L38	L38 var	ious TE modes		Board/PPT
39.	L39	L39 Nu	merical		Board/PPT
40.	L40	L40 Exc	citation of waveguide		Board/PPT
41.	L41	L41 Wa	aveguide terminations		Board/PPT
42.	L42	L42 Nu	merical		Board/PPT
43.	L43	L43 Nut	merical		Board/PPT
44.	L44	L44 Rev	vision of Module-3		Board/PPT
45.	L45	L45	Revision of all modules		Board/PPT

* These dates are only indicative - applicable to one section handled by subject IC. Dates will vary from section to section.

Topics relevant to "SKILL DEVELOPMENT": Transmission line parameters, Reflection coefficient, VSWR, Impedance Matching, Smith Chart, Waveguides for **Skill Development** through **Problem Solving** techniques. This is attained through the **Assignment** as mentioned in the assessment component.

ASSESSMENT SCHEDULE:

Sl.no	Assessment type	Contents	Course outcome Number	Duration In Minutes	Marks	weighta ge	Venue, DATE &TIME
1	Assignement	Module-1 and 2	CO1, CO2		30	15%	
2	Mid Term Examination	Module-1 and 2	CO1, CO2	90 minutes	60	30%	
3	Assignment Review of digital / e- resources from Pres. Univ. link given in the References Section - (Mandatory to submit screenshot accessing digital resource. Otherwise it will not be evaluated)	https://ieeexpl ore.ieee.org/d ocument/6922 <u>826</u> https://ieeexpl ore.ieee.org/d ocument/5439 <u>64</u> :://ieeexplore.i <u>eee.org/docu</u> ment/271122	CO 2 and CO 3	Library visit at least for 2hours	10	5%	Will be announced one week prior to submission-
4	End Term Final Examination	Module-1,2,3	C01-C03	3 hrs	100	50%	

COURSE CLEARANCE CRITERIA: A minimum of 75% attendance is required to attend the end term exam. Makeup policy will be only as per academic regulation. There will be no make-up for ASSIGNMENT and QUIZ

CONTACT TIMINGS IN THE CHAMBER FOR ANY DISCUSSIONS: It will be announced in the class. Interested students may meet the Instructor In-charge during the Chamber Consultation Hour to clear doubts.

SAMPLE THOUGHT PROVOKING QUESTIONS:

SL	QUESTION	MARKS CO BLOOM'S LEVEL
		Page 9 of 12

NO				
1	A co-axial lossless transmission lines T1 and T2 as shown in figure. If the phase velocity of the signal shown in the plot is 1.5×10^8 m/s. How do you find the length of T2 transmission line? Input length = Im T_2 Length = L T_2 T_2	06	1	Knowledge
2	Transmission lines enable the transfer of electrical signals by a pair	05	1	Knowledge
	of conducting wires that are separated from each other by a dielectric medium which is usually air. The parameters of the transmission line are distributed over all its length. Identify the parameters of a transmission line.			
3	The key parameter in stub matching is the normalized admittance at a point on the transmission line. A transmission line of characteristic impedance 50Ω is terminated in a load of impedance of 60 -j 80Ω . It is matched using a short circuited stub of length 'l' located at a distance 'd' from the load. The wavelength of the operation is 1m. Determine d and l using the Smith chart.	10	2	Application
4	Waveguide is a hollow metallic tube to transmit a wave from one point to the other. Standard air-filled rectangular waveguides of dimension $a = 2.29$ cm and $b = 1.02$ cm are designed for radar application. It is desired that these waveguides operate only in the dominant TE10 mode but not higher than 95% of the next cutoff frequency. How do you find the range of the allowable operating frequency f	08	3	Comprehension
5	The cutoff frequency of TE01 mode of an air filled rectangular waveguide having inner dimensions a cm x b cm ($a>b$) is twice that of the dominant TE10 mode. When the waveguide is operated at a frequency which is 25% higher than the cutoff frequency of the dominant mode, the guide wavelength is found to be 4cm. How do you find the value of b in cm.	10	3	Comprehension

Target set for course Outcome attainment:

SI. NO	CO NO.	Course Outcomes	REGISTRAR Target set for attainment in percentage
			Page 10 of 12

1.	CO1	Explain the working of transmission lines such as co-axial cable and associated parameters	60%
2.	CO2	Summarize the calculations pertaining to stub impedance and its parameters	50%
3.	CO3	Describe the working of waveguide such as rectangular waveguide and associated parameters	45%

Signature of the course Instructor:

This course has been duly verified Approved by the D.A.C.

Signature of the Chairperson D.A.C.

Course Completion Remarks & Self-Assessment. [This has to be filled after the completion of the course]

[Please mention about the course coverage details w.r.t. the schedule prepared and implemented. Any specific suggestions to incorporate in the course content. Any Innovative practices followed and its experience. Any specific suggestions from the students about the content, Delivery, Evaluation etc.]

Sl.no.	Activity	Scheduled Completion Date	Actual Completion	Remarks
	As listed in the course Schedule		Date	
1	Midterm Examination			
3	End term Examination			
4	Assignment Project	Before the submission of assessment marks		

Any specific suggestion/Observations on content/coverage/pedagogical methods used etc.:

Course Outcome Attainment:

51.110	C.O.	Course	Target	set	for	Actual	C.O.	Remarks on attainment &
-	No.	Outcomes	attainme	ent	in	Attainme	nt	Measures to enhance the
			percenta	ige		In Percen	tage	attainment
01	CO1	Explain the working of transmission lines such as co-axial cable and associated parameters	60%					
02	CO2	Summarize the calculations pertaining to stub impedance and	50%					EGISTRAR

ANGALOR

		its parameters		
03	CO3	Describe the working of waveguide such as rectangular waveguide and associated parameters	45%	

Name and signature of the Faculty member:

D.A.C. observation and approval:

BLOOM'S TAXONOMY

Learning Outcomes Verbs at Each Bloom Taxonomy Level to be used for writing the course Outcomes.

Cognitive Level	Illustrative Verbs	Definitions
Knowledge	arrange, define, describe, duplicate, identify, label, list, match, memorize, name, order, outline, recognize, relate, recall, repeat, reproduce, select, state	remembering previously learned information
Comprehension	classify, convert, defend, discuss, distinguish, estimate, explain, express, extend, generalize, give example(s), identify, indicate, infer, locate, paraphrase, predict, recognize, rewrite, report, restate, review, select, summarize, translate	grasping the meaning of information
Application	apply, change, choose, compute, demonstrate, discover, dramatize, employ, illustrate, interpret, manipulate, modify, operate, practice, predict, prepare, produce, relate schedule, show, sketch, solve, use write	applying knowledge to actual situations
Analysis	analyze, appraise, breakdown, calculate, categorize, classify, compare, contrast, criticize, derive, diagram, differentiate, discriminate, distinguish, examine, experiment, identify, illustrate, infer, interpret, model, outline, point out, question, relate, select, separate, subdivide, test	breaking down objects or ideas into simpler parts and seeing how the parts relate and are organized
Synthesis	arrange, assemble, categorize, collect, combine, comply, compose, construct, create, design, develop, devise, explain, formulate, generate, plan, prepare, propose, rearrange, reconstruct, relate, reorganize, revise, rewrite, set up, summarize, synthesize, tell, write	rearranging component ideas into a new whole
Evaluation	appraise, argue, assess, attach, choose, compare, conclude, contrast, defend, describe, discriminate, estimate, evaluate, explain, judge, justify, interpret, relate, predict, rate, select, summarize, support, value	making judgments based on internal evidence or external criteria

REGISTRAR Reais

SCHOOL of ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Year: 2022-2023 (OD	DD)	Semester: 5	Section: 3
Course Title Course Code	: TRANS : ECE300	MISSION LINES AND WA	VEGUIDES
Type of Skill	: Skill De	velopment	
Type of Activity	: Problem	Solving	
Instructor in Charge	: Dr. SRF	CENIVASAPPA	
Instructor for Section	: Mrs Sri	lakshmi K H	
Details about the activity	: Students	were asked to submit assign	ment

Assignment

1. The open-circuit and short-circuit impedances measured at the input terminals of a very low-loss transmission line of length 1.5 m, which is less than a quarter wavelength, are respectively $-j54.6 \Omega$ and $+j103 \Omega$.

(i) Find the Z_0 and γ of the line.

(ii) Without changing the operating frequency, find the input impedance of a short-circuited line that is twice the given length.

(iii) How long should the short- circuited line be in order for it to appear as an open-circuit at the input terminals?

2. A 600 Ω transmission line is 150 *m* long, operates at 400 *KHz* with $\alpha = 2.4_* \, 10^{-2}$ Np/m and $\beta = 0.0212$ rad/m, and supplies power to a load of impedance $Z_R = 424.3 \angle 45^\circ \Omega$. Find the length of line in wavelengths, Γ_R , Γ_S and Z_S . For a received voltage $\hat{V}_R = 50 \angle 0^\circ V$, find V_S , at a position on the line where the voltage is a maximum, and the value of \hat{V} .

3. A load $Z_L = 100 + j50 \Omega$ is connected across a transmission line with $Z_0 = 50 \Omega$ and $l = 0.4\lambda$. At the generator end, d = 1 $Z_S = 100 \Omega$. What are the input impedance Z_{in} and admittance Y_{in} of the line, including the shunt connected element?

4. A long transmission line has a characteristic impedance Z_0 and is terminated with an impedance Z_L .

(i) Derive an expression for the input impedance Z_{in} in terms of Z_L , Z_0 and Z_{OC} where Z_{OC} is the open-circuited impedance. (*ii*) Using the derived result, calculate Z_{in} if $Z_0 = 75 \Omega$, $Z_L = 100 \angle 45^\circ$ and $Z_{OC} = 100 \angle -45^\circ$

5. A transmission line of length *l* has resistance, inductance and leakage conductance per unit length *R*, *L* and *G* and negligible capacitance. It is short-circuited at both ends and at time t = 0 a voltage distribution $V = V_0 \sin \frac{\pi x}{l}$ is set up on it. Calculate the subsequent variation in voltage.

anne

REGISTRAR

(Hint: Assume the voltage to be in the form $V = V_0 \sin \frac{\pi x}{r} e^{-\gamma t}$. Find the expression for γ)

6. For a transmission line of $Z_0 = 75 \Omega$ and length $l = 0.1\lambda$, find the input impedance if the load end is

(i) short-circuited

(ii) open-circuited

In both the cases you must solve using <u>Smith chart</u> and verify analytically.

7. A load of $100 + j150 \Omega$ connected to a 75 Ω lossless line. Using a Smith chart, find the following.

- (i) Г
- (ii) VSWR
- (iii) The load admittance Y_L
- (iv) Z_{in} at 0.4 λ from the load
- (v) The locations of V_{max} and V_{min} with respect to the load if the line is 0.6λ long
- (vi) Z_{in} at the generator.

8. With an unknown load connected to a slotted air line (a type of transmission line), VSWR = 2 is recorded by a VSWR meter and minima are found at 11 cm, 19 cm, ..., on the scale. When the load is replaced by a short circuit, the minima are at 16 cm, 24 cm, ..., . If $Z_0 = 50 \Omega$, calculate λ , f, and Z_L .

9. Consider a 75 Ω T_X line terminated in a load. If an open-circuited stub of length 0.15 λ and characteristic impedance 100 Ω is connected at *AB* (as shown in the figure 1) such that it is located at a distance of 0.30 λ from Z_L such that the line is matched, then determine Z_L . Assume that the phase-velocities in the line and the stub are the same and both lines are lossless.

Figure 1: Open-circuited single stub (Q. No. 9)

10. A 75Ω -line is terminated in a load Z_L . The maximum and minimum currents on the line are 0.2 A and 0.08 A. If the nearest voltage minimum is at a distance of 0.15 λ from the load, find the following

-0.30λ-

(i) VSWR and Γ

(*ii*) Load impedance Z_L

(iii) Nearest distance to the load at which a voltage maximum occurs.

11. An air-filled rectangular waveguide of sides $a \times b$ (a = 6 cm and b = 3 cm). Given that

$$H_z = \cos \frac{\pi y}{b} \sin 2\pi * 10^{10}t - \theta z$$

determine the mode of operation, and then calculate the phase constant, the wave impedance of this mode and the average power flow in the waveguide.

12. An air-filled rectangular waveguide of sides $a \times b$ is closed at one end by a perfectly conducting plate so that it is short-circuited and is excited at the fundamental mode TE_{10} . Find the resultant electromagnetic field in the waveguid

PRESIDENCY UNIVERSITY

ASSIGNMENT-2

NAME : CHASHMITHA . B

ROLL NO : 20201ECE0145

SECTION : SECE - 3

COURSE : TRANSMISSION LINE AND WAVEGUIDES

ASSIGNMENT - 2
of Lace =
$$j546.0$$

 $3c = j103.0$
 $1 = 26 = 5xc - 26c$
 $= \sqrt{j((5+i)(j)(00)} = 35(1)$
 $3^{2} = \frac{1}{1} + 4n^{-1} h \left(\sqrt{\frac{2xc}{2xc}} \right) = \frac{1}{1.5} + 4n^{-1} (-1.32)$
 $3^{2} = \frac{4}{1.5} + 6$
 $\beta = \frac{3\pi}{5}$
 $3 = 4 \times 1.5 = 6$
 $\beta = \frac{3\pi}{6} = \frac{\pi}{3} \operatorname{rad} \operatorname{Im}$
 $3 = 4 \times 1.5 = 6$
 $\beta = \frac{4\pi}{6} = \frac{\pi}{3} \operatorname{rad} \operatorname{Im}$
 $3 = c + \frac{1}{3} \int \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{3} + \frac{\pi}{3} + \frac{\pi}{3} \int \frac{\pi}{3} + \frac{\pi}{3} + \frac{\pi}{3} \int \frac{\pi$

5. The wave equation for a long Transmission in

$$\frac{d^{3}v}{dx^{2}} = \binom{k}{k} \frac{dv}{dt} + \binom{k}{k}^{3}$$
 $v(o,t) = 0$
Where $v(o$

6

Starsard St

$$Hir \Gamma_{S} = -TR$$

$$= 0.1+1[45]$$

$$Iv = Z_{S} = Z_{0}^{*} (1+\Gamma_{K}) = 600 \times (1+0.1+1[45])$$

$$IS = 4+50.8 [\underline{h}] = \underline{2}^{*} - \Omega$$

$$V = Y_{K} = 50V$$

$$Vi = Y_{K} = 50V$$

$$Vi = Y_{K} = \frac{1}{2} + \underline{2}^{*} - \Omega$$

$$V = Y_{K} = \frac{1}{2} + \underline{2}^{*} - \Omega$$

$$V = \frac{1}{2} + \frac{1$$

B = RK = ROK 6 KI.O Rin = 751 tan (20x 0.1) = 175 tan (2K) Since tan (ax)=0, The input impedance for SC Lod is Zin=0-0; li open conaut Smith charit 1- hocate load impedance on smith chart (00) 2. Trace a constant length curve by = 0.17 Zin = - 1 Zo cot (PL) substitute . $2in = -j \neq 5 \cot\left(\frac{a \circ x}{\lambda} \circ \cdot i \lambda\right)$ = cot (RA), it is undefined i for short circuit load Zin=0-2 ii for open circuit, the input impedance is undefined. 7. Smith charit Z1 = 100 + 8150-2 20=75-2 1. Normalize = 100 + 1150. = 1.33 + 25 r= 1-33, x = a. 11. T= 40 iii . VSW R = 5 iv . Zin= 0.4% v. At generator = 0.06 8. VSWR = 2 Minima unknown 11, 19. Minima for SC 16,24 20=50 REGISTRAR

pr wiknewn load

$$n - 11 = 2 \text{ cm} = \frac{1}{2}$$

Strie both measurements results assume $\frac{1}{2}$, we can conclude by
(A) is lean. New to calculate \pm
 $A = \frac{1}{2}$, $(z = 3 \times 10^{5})$, $A = 16 \text{ im} = 0.160$
 $0.16 = \frac{3}{26}$, $A = 1.8 \pm 56 \text{ Hz}$
 $V \text{SMR} = \frac{1 + 171}{1 - 171}$, $A = \frac{1 + 17}{1 - 17}$
 $|T| = \frac{1}{3}$
F for SC (S - 1) we can calculate the load impedance using
 $\frac{1}{2} = \frac{20(1 + 7)}{1 - 17}$
 $\frac{1}{2} = 0$
9. Given:
 $20 = 350 \text{ a.}$, $l = 0.15\lambda$, $2_{L} = 100 \text{ a.}$
The reflection coefficient at point should be zero
 $\sqrt[3]{-\beta} = (\frac{2(n - 2L)}{2(n + 2L)}$
 $\frac{1}{2(n - A} = 100 \text{ a.}$
 $\beta = \frac{2K}{R}$
 $\lambda = \frac{2K}{$

REGISTRAR

Stor

characteristic impedance is the same at both points.

. . In-B= 20 $\partial \beta = Iin - Z_{\perp}$ Zin +ZL $= Zin - \beta - Z_L = 0$ Zin-B+IL (since the line is matched) 20-21 = D ZL= 78-2 : ZL= 75_0, 78=0. A=A 10. Given: 20=75-0, Imax = 0.2A, Imin= 0.08A VSWR= Imax + Imin Imax - Imin $= \frac{0.2 + 0.08}{0.2 - 0.08} = \frac{2.33}{2.33}$ Reflection coefficient T = VSWR - 1 = 1.33 = 0.39VSWR+1 3.33 $Z_{k} \Rightarrow T = Z_{k} - Z_{0}$ ZL+20 $Z_{L} = Z_{0} \times \left(\frac{1+\Gamma}{1-\Gamma}\right) = \mp 5 \left(\frac{1+0-39}{1-0.39}\right)$ $Z_{k} = \frac{75 \times \left(\frac{1 \cdot 39}{9 \cdot 61}\right) = 170.9 - 0.$ Nearest distance to load for voltage measurement $d = \frac{\lambda}{4}$ Given that the nearest voltage minimum is at a distance d=0.15x + A d= 0.65% anue REGISTRAR

1

It is a low momentide the cut off frequency for the TE
tor a rectangular activity and but
mode is given by
$T_C = \frac{1}{2\sqrt{32152}}$
A = 600 = 0.0600
b= 0.03m
fc= 3×108
$2\sqrt{(0.06)^2+(0.03)^2}$
$f_{C} = 3 \times 10^8$
D-6118
$f c = 4.903 \times 10^8$
The given signal frequency is 21 × 1010 > fr. Cust off - frequency
The phase constant B is given by
$B = 2\pi x + \sqrt{E\mu - (4c)^2}$
$\beta = 2\pi \times 2\pi \times 10^{10} \sqrt{2.954 = 10^{10}}$
$(5.03 \times 10^{-7} - (5.03 \times 10^{-7}))$
= 3.94 × 10" × 3.32×10-10 C & × 1010
$\beta = 13.0917$
$\lambda = \sqrt{4\pi \times 10^{-7}} \times 1.992 \times 10^{-7}$
8.854 X10-18 2x X2x X1010
Z=191.43_2
$P = \left(\frac{1}{2}\right) \operatorname{Real}\left(\varepsilon^{\circ} \times \mu^{+}\right) = \varepsilon_{z=0}$
$H_{Z} = cos\left(\frac{+v}{b}\right)$
$H_{I} = -j \left(\frac{B}{10}\right) \times \sin\left(\frac{\pi 4}{b}\right)$
$Hx = j(B/w) \times sin(\pi 4/.)$
$P = 1/2 \times 0$ (according)
12 ~ Kelos (p/w))
$P = \sqrt{a} \cdot o$
P = 0

1

() ()

12. El etric field.
E(2, y, z) = Eo sin(<u>xm</u>) * con(<u>xm</u>) sin(vot)
Magnetic field.
M(x, y, z) = Ho con(<u>xm</u>) sin(<u>nx</u>) sin wet
1. Electric field.
Sinusoidal variation along the x-direction.
E(x, y, z) = Eo sin(<u>xx</u>)
at x=0 (t is SC
2. Magnetic field
Sinusoidal variation along Y-direction.
H(x, y, z) = Ho x sin(<u>xy</u>)
St reaches its max value at the center of the wave quide.
3. Time Vasuation.

Both electric & magnetic fields very sinusoidally with time, with a frequency determined by w

Electromagnetic field in the waveguide exhibits a standing wave pattern along the x f y directions corresponding to TE10 mode.

REGISTRAR

The magnetic field is polarized in Y-direction. The electric field is polarized in X-direction.

1

Course Codes	Course Title: In	oformation Theory and	Coding						
Course Code:	Type of Course: P	rogram Core Basket		L- P- C	3	0	3		
ECE3012	Theory only								
Version No.	2.0								
Course Pre-	Basic concepts of s	imple Applied Statistics	[MAT100	3], Digital	Comn	nunica	tion		
requisites	[ECE3007]Mean a	and variance of discrete	random v	variables,	Joint p	robabi	ility,		
	Probability theor	y							
	Basic communica	tion block diagram and	l its worki	ng, Chann	els				
Anti-requisites	NIL								
Course	The course is de	The course is designed for undergraduate level students to learn about							
Description	information coding in communication. The main objective of the course is to								
	understand the b	asics of errorcontrol co	oding in th	e informa	ntion. T	This co	urse		
	will be foundation	n for advanced signal p	rocessing	and netw	ork se	curity.	The		
	research potentia	al of the subject can n	nake stud	ents to le	arn ai	nd dev	elop		
	algorithm.Thisco	urse provides an intro	oduction t	the cor	ncept o	of Entr	opy,		
	rate of informat	ion and various sourc	ce encodi	ng algorit	thms.	Discre	te &		
	continuous comn	nunication channels ar	e include	d to get t	he kn	owledg	ge of		
	numerical comp	utations in the devel	opment o	of commu	inicati	on sys	stem		
	without any error	r.							
Course	<mark>The objective of t</mark>	<mark>he course is to familiari</mark>	<mark>ize the le</mark>	<mark>arners wit</mark>	h the	concep	<mark>ts of</mark>		
Objective	Information The	ory and Coding and at	tain the <u>S</u>	KILL DEVE	<u>LOPME</u>	<u>NT</u> thr	ough		
	PROBLEM SOLVING	<u>i.</u>							
Course	On successful con	npletion of this course t	he studen	ts shall be	e able t	t o:			
Outcomes	1. Discuss th	e concept of dependen	it and ind	ependent	sourc	e, mea	sure		
	of informa	ition, Entropy, rate of in	formation	n and orde	er of a	source	•		
	2. Apply the	information source usin	ng Shanno	n encodir	ng, Sha	nnon F	^r ano,		
	encoding a	and Huffman encoding a	algorithms	S.					
	3. Analysis o	of the continuous and	l discrete	commun	icatio	n chan	nels		
	using inpu	ıt, output and jointprob	abilities.						
	4 Analysis of a codeword comprising of the check hits computed using								
1	linear blockcodes cyclic codes and convolutional codes								
	linear bloc	ckcodes, cyclic codes an	d convolu	tional cod	les.				
Course Content	linear bloc	ckcodes, cyclic codes an	d convolu	tional cod	les.				
Course Content	linear bloc	ckcodes, cyclic codes an	d convolu	tional cod	les.	1	0		
Course Content Module 1	Introduction to	ckcodes, cyclic codes an Assignment/Quiz	d convolu Numerica	tional cod	les.		0		
Course Content Module 1	Introduction to Information Theory	ckcodes, cyclic codes an	Numerica recall bas	tional cod al/ Memor sed	les.	1) Clas	0 ses		
Course Content Module 1 Topics	Introduction to Information Theory	ckcodes, cyclic codes an	d convolu Numerica recall bas	tional cod al/ Memor sed	y	1) Clas	0 ses		
Course Content Module 1 Topics Introduction, Mea	Introduction to Information Theory	ckcodes, cyclic codes an Assignment/Quiz	Numerica recall bas message, A	tional cod al/ Memor ed Average In	les. y format	1 Clas	0 ses		
Course Content Module 1 Topics Introduction, Mea of symbols in L	Introduction to Information Theory asure of information ong Independent s	ckcodes, cyclic codes an Assignment/Quiz	Numerica recall bas message, A rmation c	tional cod al/ Memor ed Average In ontent of	y format	10 Clas tion con	0 ses ntent Long		
Course Content Module 1 Topics Introduction, Mea of symbols in L dependent seque	Introduction to Information Theory asure of information ong Independent s nces, Markov Statist	ckcodes, cyclic codes an Assignment/Quiz 1, Information content of equences, Average Info ical Model of Information	Numerica recall bas message, A rmation c Sources, F	tional cod al/ Memory ad Average In ontent of Entropy an	les. y format symbo d Infor	10 Clas tion con ols in rmation	0 ses ntent Long rate		
Course Content Module 1 Topics Introduction, Mea of symbols in L dependent seque of Markoff Source	Introduction to Information Theory asure of information ong Independent s nces, Markov Statist	ckcodes, cyclic codes an Assignment/Quiz , Information content of equences, Average Info ical Model of Information	Numerica recall bas message, A rmation co Sources, F	tional cod al/ Memor ed Average In ontent of Entropy an	les. y format symbo d Infor	10 Clas tion con ols in timation	0 ses ntent Long rate		
Course Content Module 1 Topics Introduction, Mea of symbols in L dependent seque of Markoff Source Module 2	Introduction to Information Theory asure of information ong Independent s nces, Markov Statisti s. Information	ckcodes, cyclic codes an Assignment/Quiz n, Information content of equences, Average Info ical Model of Information	Numerica recall bas message, A rmation c Sources, F	tional cod al/ Memor ad Average In ontent of Entropy an	format symbc d Infor	10 Clas ion cor ols in mation	0 ses ntent Long rate		
Course Content Module 1 Topics Introduction, Mea of symbols in L dependent seque of Markoff Source Module 2	Introduction to Information Theory asure of information ong Independent s nces, Markov Statisti s. Information Coding	ckcodes, cyclic codes an Assignment/Quiz n, Information content of sequences, Average Info ical Model of Information Assignment	Numerica recall bas message, A rmation c Sources, F Numerica	tional cod al/ Memory sed Average In ontent of Entropy an	format symbo d Infor	10 Clas cion cor ols in mation 9 Clas	0 ses ntent Long rate ses		
Course Content Module 1 Topics Introduction, Mea of symbols in L dependent seque of Markoff Source Module 2 Topics	Introduction to Information Theory asure of information ong Independent s nces, Markov Statisti s. Information Coding	ckcodes, cyclic codes an Assignment/Quiz h, Information content of equences, Average Info ical Model of Information Assignment	numerica recall bas message, A rmation c Sources, F Numerica	tional cod al/ Memory al/ Memory ad Average In ontent of Entropy an al	les. y format symbo d Infor	10 Clas cion con ols in rmation 9 Clas	0 eses ntent Long rate ses		
Course Content Module 1 Topics Introduction, Mea of symbols in L dependent seque of Markoff Source Module 2 Topics Source coding th	Introduction to Information Theory asure of information ong Independent s nces, Markov Statistics. Information Coding	ckcodes, cyclic codes an Assignment/Quiz n, Information content of equences, Average Info ical Model of Information Assignment lan Inequality property -	numerica recall bas message, A rmation co Sources, F Numerica – KML, Fac	tional cod al/ Memory sed Average In ontent of Entropy an al	format symbo d Infor	10 Clas cion con ols in mation 9 Clas	0 ses ntent Long rate ses		

Huffman coding							
Modulo 2	Information	Quiz / Accimmont	Memory recall based /	10			
Module 5	Channel	Quiz/ Assignment	Numerical	Classes			
Topics							
Communicatio	on Channel block diagra	am, Channel Matrix, Joint	probability Matrix, Mutual	Information,			
Channel Capa	city, Channel Capacity o	of : Binary Symmetric Cha	annel, Binary Erasure Chann	el, Muroga,s			
Theorem, Con	tinuous Channels: Shar	nnon's Hartley law and its	s numerical.				
Module 4	Error Control	Quiz/Assignment	Memory recall based /	10			
Module 4	Coding	Quiz/ Assignment	Numerical	Classes			
Topics							
Error Contro	Coding: Introduction	, Examples of Error co	ontrol coding, methods of	Controlling			
Errors, Types	of Errors, types of C	odes, Linear Block Cod	es: matrix description of I	inear Block			
Codes, Error	detection & Correction	on capabilities of Linear	Block Codes, Single error	correction			
Hamming coc	e, Table lookup Decoc	ling using Standard Arra	ıy.				
List of Labor	atory Tacke						
	itory rasks.						
Targeted App	lication & Tools that	can be used:					
Application ar	ea of Information Theo	ory and Coding in Networ	k Security and Computer				
Communicatio	on System.						
Professionally	used software : MATL	AB					
Text Book(s)							
1. Digital 1996.	and analog communic	ation systems, K. Sam Sha	anmugam, John Wiley India	Pvt. Ltd,			
2. ITC an	d Cryptography, Ranjar	n Bose, TMH, II edition, 2	007				
Reference(s)							
1 Digital	Communications – Fun	damentals and Application	ns Bernard Sklar, Second Edit	tion Pearson			
Educat	ion 2016 ISBN: 97801	34724058	is, Bernard Skiar, Second Ear	lion, i carson			
2 Inform	ation Theory and Coding	g-by Dr. J. S. ChitodeTech	unical Publications First editio	n 2021			
		B 0 J 2 0 0					
Online Resou	rces (e-books, notes, pp	ts, video lectures etc.):					
1. Video	lectures on" Source cod	ing theorem" by Prof: SN	Merchant, IIT				
Bomba 2 Videos	yhttps://nptel.ac.in/co	ourses/117101053 formation Conditional and	Loint				
Entrop	vhttps://www.digimat.in	/nptel/courses/video/1081	02117/L02.html				
3. Preside	ency University Library L	ink <u>https://presiu</u>	niv.knimbus.com/user#/hom	<u>e</u>			
E-content:							
$1 V_2 I_3$	Lustin D. Coon"Mitio	ating Bit Sunchronization	From in Huffmon Codina	Aided Index			
Modul	ation" IEEE Comm	nunications Letters (Vo	lume: 23, Issue: 3, Ma	arch 2019)			
<u>https://</u>	ieeexplore.ieee.org/docu	<u>iment/8588988/authors#au</u>	atrum Annroach to Wash V-	riabla I an atl			
2. Snigea	KI KUZUOKA, Shun Wata Coding With Side-Ir	nabe An Information-Spe	ctrum Approach to weak van	rv (Volume			
61, Iss	ie: 6, June 2015) Page(s	s): 3559 – 3573. <u>https://ieee</u>	explore.ieee org/document/708	<u>39269</u>			
3. Distrib	uted Source Coding Usi	ng Abelian Group Code	s: A Next Achievable Ra	te-Distortion			
Regior	"Dinesh Krithivasan;	S. Sandeep Pradhan,	IEEE Transactions on	Information			
Ineory	rearzorr, volume:	<i>31</i> , Issue. <i>3</i> , Journal A	ancie, Publisher. Intercuted	uy: rages			

(44)<u>https://ieeexplore.ieee.org/document/5714261</u>

4. Aleksandar Radonjic "Integer Codes Correcting Single Errors" IEEE Communications Letters (Volume: 22, Issue: 1, January 2018, Page(s): 17 - 20 https://ieeexplore.ieee.org/document/8055561

Topics relevant to "SKILL DEVELOPMENT": Information content of message, Markov Statistical Model, Source Coding, Channel Capacity, Error Control Coding for **Skill Development** through **Problem Solving** methodologies. This is attained through assessment component mentioned in course handout.

Topics relevant to development of "FOUNDATION SKILLS" : Communication system and channels

Topics relevant to "HUMAN VALUES AND PROFESSIONAL ETHICS": Designing an error free communication system.

Catalogue	
prepared by	Ms. Akshatha K
Recommended	
by the Board of	BOS Meeting NO: 15th, Dated BOS 28/07/2022
Studies on	
Date of	Academic Council Meeting No. 18th, Dated 03/08/22
Approval by	
the Academic	
Council	

(Established under the Presidency University Act, 2013 of the Karnataka Act 41 of 2013)

A-8[2022] COURSE HAND OUT [Integrated Course]

SCHOOL: Engineering 2022

DEPT.:Electronics and Communication Engineering

June

DATE OF ISSUE:

NAME OF PROGRAM: B.Tech

P.R.C. APPROVALREF :

SEMESTER/YEAR : 6/3

COURSE TITLE&CODE: Information Theory and Coding & ECE3012

COURSECREDITSTRUCTURE: 3 Credits (L=3, T=0, P=0, C=3)

CONTACTHOURS : 3Hours/Week

COURSEINSTRUCTOR

PROGRAM OUTCOMES:

Graduates of the B.Tech.Program in Electronics and Communication Engineering will be able to: PO1.Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundame ntals, and an engineering specialization to the solution of complex engineering problems (H).

PO2.Problemanalysis:Identify,formulate,reviewresearchliterature,andanalyzecomplexe ngineering problems reaching substantiated conclusionsusingfirst principles of mathematics,naturalsciences,andengineeringsciences(H).

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration on for the public health and safety, and the cultural, societal, and environmental considerations (M).

PO4. Conductinvestigations of complex problems: Useresearch-

basedknowledgeandresearchmethodsincluding design of experiments, analysis and interpretation of data, and synthesis of the information toprovidevalidconclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modernengineeringandITtoolsincludingpredictionandmodelingtocomplexengineeringactivities withanunderstandingofthelimitations(H)

PO6.**Theengineerandsociety**:Applyreasoninginformedbythecontextualknowledgetoassesssoc ietal,health, safety, legal and cultural issues and the consequent responsibilities relevant to the professionalengineeringpractice.

PO7. **Environment and sustainability**: Understand the impact of the professional engineering solutions societal and environmental contexts, and demonstrate the knowledge of, and need for sustainabled evelopment.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and normsofthe engineeringpractice(H).

PO9. **Individual and team work**: Function effectively as an individual, and as a member or leader indiverse teams, and inmultidisciplinary settings.

PO10.Communication:Communicateeffectivelyoncomplexengineeringactivities with the engine ering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (M).

PO11. Project management and finance: Demonstrate knowledge and understanding of the

engineeringandmanagementprinciplesandapplythesetoone'sownwork,asamemberandleaderin ateam,tomanageprojectsandinmultidisciplinaryenvironments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage inindependentandlife-longlearninginthebroadest contextoftechnologicalchange(L).

Itgalpur, Rajankunte, Yelahanka, Bengaluru – 560064

COURSE PREREQUISITES:

Basic concepts of simple Applied Statistics Digital Communication Mean and variance of discrete random variables, Joint probability, Probability theory

COURSE DESCRIPTION:

The course is designed for undergraduate level students to learn about information coding in communication. The main objective of the course is to understand the basics of error control coding in the information. This course will be foundation for advanced signal processing and network security. The research potential of the subject can make students to learn and develop algorithm. This course provides an introduction to the concept of Entropy, rate of information and various source encoding algorithms. Discrete & continuous communication channels are included to get the knowledge of numerical computations in the development of communication system without any error.

Course Objective:

The objective of the course is to familiarize the learners with the concepts of Information Theory and Coding and attain the <u>SKILL DEVELOPMENT</u> through <u>PROBLEM SOLVING.</u>

COURSE OUTCOMES: On successful completion of the course the students shall be able to:

- 5. Discuss the concept of dependent and independent source, measure of information, Entropy, rate of information and order of a source.
- 6. Apply the information source using Shannon encoding, Shannon Fano, encoding and Huffman encoding algorithms.
- 7. Analysis of the continuous and discrete communication channels using input, output and joint probabilities.
- 8. Analysis of a code word comprising of the check bits computed using linear block codes, cyclic codes and convolutional codes.es.

MAPPING OF C.O. WITH P.O

PO→ CO	1	2	3	5	8	10	12
1	Н	Н	Μ	Н	Н	Μ	L
2	Н	Н	М	Н	Н	Μ	L
3	Н	Н	Μ	Н	Н	Μ	L
4	Н	Н	М	Н	Н	М	L

REGISTRAF

COURSE CONTENT (SYLLABUS):

Module 1:Introduction to Information Theory [10Hrs.][Bloom's levelselected:Comprehension]

Introduction, Measure of information, Information content of message, Average Information content of symbols in Long Independent sequences, Average Information content of symbols in Long dependent sequences, Markov Statistical Model of Information Sources, Entropy and Information rate of Markoff Sources.

Module 2: Information Coding [9Hrs.][Bloom's levelselected:Comprehension]

Source coding theorem, Kraft McMillan Inequality property – KMI, Encoding of the Source Output, Shannon's Encoding Algorithm, Shannon Fano Encoding Algorithm, Huffman codes, Extended Huffman coding.

Module 3: Information Channel [10Hrs.]Bloom's level selected: Application]

Communication Channel block diagram, Channel Matrix, Joint probability Matrix, Mutual Information, Channel Capacity, Channel Capacity of : Binary Symmetric Channel, Binary Erasure Channel, Muroga, Theorem, Continuous Channels: Shannon's Hartley law and its numerical.

Module 4:Error Control Coding [10Hrs.]Bloom's level selected: Application]

Introduction, Examples of Error control coding, methods of Controlling Errors, Types of Errors, types of Codes, Linear Block Codes: matrix description of Linear Block Codes, Error detection & Correction capabilities of Linear Block Codes, Single error correction Hamming code, Table lookup Decoding using Standard Array.

SKILL SETS TO BE DEVLOPED:

- 1. An attitude of enquiry.
- 2. Confidence and ability to tackle new problems.
- 3. Ability to interpret events and results.
- 4. Ability to work as a leader and as a member of a team.
- 5. Assess errors in systems/processes/programs/computations and eliminate them.
- 6. Observe and measure physical phenomena.
- 7. Write reports.
- 8. Select suitable equipment, instrument, materials & software
- 9. Locate faults in system/Processes/software.
- 10. Manipulative skills for setting and handling systems/Process/Issues
- 11. The ability to follow standard /Legal procedures.
- 12. An awareness of the Professional Ethics.
- 13. Need to observe safety/General precautions.
- 14. To judge magnitudes/Results/issues without actual measurement/actual contacts

DELIVERY PROCEDURE (PEDAGOGY):

Lectures will be conducted with the aid of multi-media projector, blackboard, etc. Assignments based on coursecontentswillbegiventothestudentsattheendofeachunit/topicandwillbeevaluatedatregular interval

Self-Learning Topics:

Modern Direct-Conversion Transmitters, Heterodyne Transmitters, OOK Transceivers

REFERENCE MATERIALS:

(I) TextBOOK(S)

- 3. Digital and analog communication systems, K. Sam Shanmugam, John Wiley India Pvt. Ltd, 1996.
- 4. ITC and Cryptography, Ranjan Bose, TMH, II edition, 2007

(II) Reference Book(S)

- **3.** Digital Communications Fundamentals and Applications, Bernard Sklar, Second Edition, Pearson Education, 2016, ISBN: 9780134724058.
- 4. Information Theory and Coding-by Dr. J. S. ChitodeTechnical Publications, First edition 2021.

(III) Class Notes / Online Resources

- 4. Video lectures on" Source coding theorem" by Prof: SN Merchant, IIT Bombay<u>https://nptel.ac.in/courses/117101053</u>
- Videos on Entropy, Mutual Information, Conditional and Joint Entropy<u>https://www.digimat.in/nptel/courses/video/108102117/L02.html</u>
- 6. Presidency University Library Link :- https://presiuniv.knimbus.com/user#/home

E-content

- <u>https://ieeexplore.ieee.org/document/8588988/authors#authors</u>
- https://ieeexplore.ieee.org/document/5714261
- <u>https://ieeexplore.ieee.org/document/8055561</u>
- <u>https://nptel.ac.in/content/syllabus_pdf/117102012.pdf</u>

(III) GUIDELINES TOSTUDENTS:

- 1. Students are required to maintain classwork which will be evaluate at the end of every month
- 2. Students are required to strictly adhere to assignment deadlines.
- 3. Students are required to actively participate in classroom discussions and other activities which is planned in the classroom.
- 4. Students are required to have minimum of 75% of attendance to be eligible to attend exam.
- 5. Follow NPTELvideos

(VI) Presidency University Library Link :- <u>https://presiuniv.knimbus.com/user#/home</u>

COURSE SCHEDULE:

SI. No.	ACTIVITY	STARTING		TOTAL NUMBER OF
		DATE	DATE	PERIODS
1.	Over View of the course			1
2.	Module : 01			06
3.	Module: 02			08
4.	Mid Term			-
5.	Module:03			08
6.	Module:04			08
7.	Course integration, Program			3
	integration and revision			
8.	Assignment			1
9.	Quiz			
10.	Assignment			
11.	Instruction last day			1

SCHEDULE OF INSTRUCTION:

Sl. No.	Session No./Date*	Titleofthe lesson	Topicstobecovered	Cos	Delivery Mode	Reference
1.			Programintegration		LECTURE	
2.		Introduction toInformation	DefinitionofInformation	1	LECTURE	T1,R1& CN
		Theory	AverageInformationContent of	1	LECTURE	T1,R1
3.			SymbolsinlongIndependentS			QCN
			equences(Entropy)			
4.		InformationRate	InformationRate	1	LECTURE	T1,R1& CN
			AverageInformationContentofS	1	LECTURE	T1,R1
5.			ymbols inlongDependent			&CN
			Sequences			
6.		Significanceof MarkoffModel	MarkoffModel	1	LECTURE	T1,R1& CN
7.			RepresentationofMarkoff	1	LECTURE	T1,R1 &CN
			SourceGraphRepresentation			
			Markov Statistical Model of Information Sources		LECTURE	T1,Ch2
8		Gain knowledgeabout	RateofInformation	2	LECTURE	T1,R1 &CN
0.		memorylesschann els	Transmission Over a DiscreteChannel			
9.			CapacityofaDiscrete	2	LECTURE	T1,R1& CN
			MemorylessChannel			
10.			ChannelCodingTheorem	2	LECTURE	11,81& CN
		Channel CodingTheorem	(Shannon'sSecondTheorem)			
11.				2	LECTURE	T1,R1&
			DiscreteChannelswithMemory		REGISTRAR	EP .

Page **9** of **18**

12.		Review of previous conceptsand discussiononoutcomeof	2	LECTURE	
		previousclasses			
13.	Entropyanditspro perties	DroportiosofEntropy	2	LECTURE	T1,R1& CN
1.4		Propertiesorentropy	2	LECTURE	T1 R1&
14.		ExtensionofDiscrete	2	LECTORE	CN
		MemorylessSource			
		CourseIntegration		LECTURE	
15.	Understand thesource	SourceCodingTheorem	1	LECTURE	T1,R1& CN
	codingalgorithms	(Shannon'sFirstTheorem)			
16.		CodeRedundancy,Code	1	LECTURE	T1,R1& CN
		Variance	1		T1 D1 0
17.			T	LECTURE	CN
	Shannon-Fano andHuffmanCodin	Shannon-FanoAlgorithm			
18.	8		2	LECTURE	T1,R1&
					CN
		HuffmanCoding	2		74 04 0
19.	Information	MutualInformationandPropertie s ofMutual	2	LECTURE	CN
		Information			
20.		ChannelCapacity	2	LECTURE	T1,R1& CN
21.	Rationale forCoding	Introduction,Rationalefor	2	LECTURE	T1,R1 &CN
		CodingandTypes andCodes			
22.		Reviewofprevious concepts	2	LECTURE	T1,R1 &CN
23.	Discrete Memoryless	Discusto Manager dass Channels	2	LECTURE	T1,R1 &CN
24	Error control	Discretementorylesschannels	3	LECTURE	T1 R1&
24.	coding techniques – Linear	Typesof Errors	0		CN
	Diockcodes		3	LECTURE	
25.		Linear Block Codes, MatrixDescriptionofLinearBlocks			T1,R1 &CN
		Codes	2		74 54 0
26.	HammingCodes		3	LECTURE	CN
		HammingCodes	2		74 54 0
27.		ErrorDetectionandCorrection	3	LECTURE	CN
		CapabilitiesofHammingCodes	2		T1 D10
28.		Encoderof(7,4)HammingCode	3		CN
29.	Syndrome Decodingprocedur e	SyndromeDecoding	3	REGISTRAR	T1,R1&
ц. Ц.		· · ·		- lat	

30.		ErrorCorrectionUsing	3	LECTURE	T1,R1&
		SyndromeVector			CN
31.		SyndromeDecoderfora(n,k)	3	LECTURE	T1,R1&
		BlockCode			CN
32.			3	LECTURE	T1,R1&
		OtherlinearBlockCodes			CN
33.		Beviewofnrevious classes and	3	LECTURE	
		discussionopoutcomeefprevious			
		classes			
		Lempel - Ziv Algorithm		LECTURE	R1,Ch3
		Course Integration		LECTURE	
34.	Conceptsoferrorc		3	LECTURE	T1,R1&
	ontrolcoding	Cin alo Dovity (Choole Dit Coolo			CN
35.			3	LECTURE	T1,R1&
		BinaryCyclicCodes,Definition			CN
36		ofCyclicCodes	3	LECTURE	
50.		PropertiesofCyclicCodes;			T1,R1 &CN
		AlgebraicStructuresofCyclicCode			
	CyclicCodesandits Properties				
37.	Fioperties	Conerator	3	LECTURE	T1,R1&
		andParityCheckMatricesofCyclic			CN
		Codes	2		T1 D10
38.		GeneratorMatrix,ParityCheck	5	LECTORE	CN
		Matrix			
39.		Test-II:Review		LECTURE	
40.		Reviewofpreviousclassesanddisc	3	LECTURE	
		ussiononoutcomeof			
		previousclasses			
41.	Encoding Usingan (n - k) BitShift	EncodingUsingan(n- k) Bit	3	LECTURE	T1,R1& CN
	Register	ShiftRegister			
42.		BlockDiagramofSyndrome	3	LECTURE	T1,R1& CN
		Calculator			
43.	BCHCodes		3	LECTURE	T1,R1& CN
		DecoderforCyclicCodes			
44.		BCHCodes(Bose-Chaudhuri-	4	LECTURE	T1,R1& CN
		HocquenghemCodes)			
45.	RSCodes,GolayCo des	Reed-Solomon(RS)Codes,	4	LECTURE	T1,R1 &CN
		GolayCodes		June	
		Table lookup Decoding using		LECTORE	R1,Ch3
	I		L	KEGISTRAR R	egistrar

			Standard Array			
46.	Convolution Codes	nal	ConvolutionalCodes,Definitionof ConvolutionalCoding,Code	4	LECTURE	T1,R1 &CN
			RateofConvolutionalEncoder			
47.			ConstraintLength(K)	4	LECTURE	T1,R1& CN
48.			Dimensionof theCode	4	LECTURE	T1,R1& CN
			Design of syndrome calculator for higher order		LECTURE	R1,Ch3
49.	Code Tree,	Trellis	CodeTree, Trellisand State	4	LECTURE	T1,R1 &CN
		lagrain	DiagramforaConvolutionalEncod er			
50.			StatesoftheEncoder	4	LECTURE	T1,R1& CN
51.			DevelopmentoftheCodeTree, StateDiagram	4	LECTURE	T1,R1& CN
52.	Viterbi Algorithmfo Decoding ofConvoluti odes	or ionalC	DecodingMethods of ConvolutionalCodes	4	LECTURE	T1,R1& CN
53.			ViterbiAlgorithmforDecoding	4	LECTURE	T1,R1& CN
54.			ViterbiAlgorithmforDecoding ofConvolutionalCodes	4	LECTURE	T1,R1& CN
55.			(MaximumLikelihood Decoding)	4	LECTURE	T1,R1& CN
56.			SequentialDecodingfor ConvolutionalCodes	4	LECTURE	T1,R1& CN
57.			SequentialDecodingfor ConvolutionalCodes	4	LECTURE	T1,R1& CN
58.			SequentialDecodingfor ConvolutionalCodes	4	LECTURE	T1,R1& CN
59.			Advantages and Disadvantages of Convolutional Codes	4	LECTURE	T1,R1& CN
60.			RevisionforEndtermExam		LECTURE	
61.			RevisionforEndtermExam		LECTURE	

anne REGISTRAR
Topics relevant to "SKILL DEVELOPMENT": Information content of message, Markov Statistical Model, Source Coding, Channel Capacity, Error Control Coding for **Skill Development** through **Problem Solving** methodologies. This is attained through the **Assignment** as mentioned in the assessment component.

ASSESSMENT SCHEDULE FOR THEORY COMPONENT:

Sl. no	Assessment type	Contents	Course outcom e Numbe r	Durati on In Hours	mark s	Weightag e (%)	Venue, DATE &TIM E
1	Assignment	Module 1,2	CO1 & CO2	-	25	12.5	Hardcop y
2	Assignment Review of digital / e- resources from Pres. Univ. link given in the References Section - (Mandatory to submit screenshot accessing digital resource. Otherwise it will not be evaluated)	 https://ieee xplore.ieee. org/docum ent/509062 <u>3\</u> https://ieee xplore.ieee. org/docum ent/547288 <u>8</u> https://ieee xplore.ieee. org/docum ent/556817 <u>8</u> https://ieee xplore.ieee. org/docum ent/556817 <u>8</u> https://ieee xplore.ieee. org/docum ent/556817 <u>8</u> https://ieee xplore.ieee. org/docum ent/556817 <u>8</u> 	CO1& CO2		25	12.5	Will be announc ed one week prior to submissi on
3	Midterm	Modules 1,2	1,2	1.5	50	25	
5	End Term Exam	Modules 1 to 5	1,2,3,4	3	100	50	

anne REGISTRAR

COURSE CLEARANCE&EVALUATION CRITERIA:

A minimum of 75% attendance is required for both lab and theory separately to attend the end term exam. Make-up policy will be only as per academic regulation.

	MethodofAssessment forCourseswithCreditStructure(L – T –0)or(L– 0–0))	
	ComponentsofContinuousAss essments	Weightage(% of TotalMarks)	DurationofAsses sm ent
1.	MidTerm	25%	1.5hour
	ThisComponentofcontinuousassessmentshallconsistofatleastTWO(02)of thefollowing: (1) Assignment(s)		
2.		25%	NA
3.	EndTermFinalExaminations	50%	3hours
	Total	100%	

MAKEUP POLICY:

If the student misses an evaluation component, he/she may be granted a make-up. In case of an absence that is foreseen, make-up request should be personally made to the Instructor-in-Charge, well ahead of the scheduled evaluation component. Reasons for unanticipated absence that qualify a student to apply for make-up include medical emergencies or personal exigencies. In such an event, the student should contact the Instructor-in-Charge as soon as practically possible.

CONTACT TIMINGS IN THE CHAMBER FOR ANY DISCUSSIONS:

It will be announced in the class. Interested students may meet the Instructor In-charge during the Chamber Consultation Hour to clear doubts.

Target set for course Outcome attainment:

SI.NO	CO NO.	CourseOutcomes	Targetsetfor attainment inpercentag e
01	CO1	Describethefundamentalsofcodingtheoryanddemonstratethe	80%
		concept ofsourcecoding.	
02	CO2	Illustratethevariouschannelcodingtheorem.	75%
03	CO3	Analyzethelinearblockcodesforerrorcontrolcoding	80%
		techniques.	
04	CO4	Designtheconvolutional codes using encoding and decoding	75%
		techniques.	

Signature of the course Instructor

This course has been duly verified Approved by the D.A.C.

Signature of the Chairperson D.A.C.

Course Completion Remarks & Self-Assessment. [This has to be filled after the completion of the course]

[Please mention about the course coverage details w.r.t. the schedule prepared and implemented. Any specific suggestions to incorporate in the course content. Any Innovative practices followed and its experience. Any specific suggestions from the students about the content, Delivery, Evaluation etc.]

Sl.no.	Activity	Scheduled Completion Date	Actual Completion Date	Remarks
	As listed in the course Schedule			
1	Over View of the course			
2	Module : 01			
3	Module: 02			
4	Assignment			
5	Mid Term Exam			
6	Module:03			
7	Module:04			
8	Quiz			

Any specific suggestion/Observations on content/coverage/pedagogical methods used etc.:

Course Outcome Attainment:

SI.NO	CO NO.	CourseOutcomes	Targetsetfor attainment inpercentag e
01	CO1	Describethefundamentalsofcodingtheoryanddemonstratethe	80%
		concept ofsourcecoding.	
02	CO2	Illustratethevariouschannelcodingtheorem.	75%
03	CO3	Analyzethelinearblockcodesforerrorcontrolcoding	80%
		techniques.	
04	CO4	Designtheconvolutional codes using encoding and decoding	75%
		techniques.	

Program Outcome Attainment:

P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12

Signature of the course Instructor MrsAkshatha K

D.A.C. observation and approval:

anne REGISTRAR Registr

BLOOM'S TAXONOMY

Learning Outcomes Verbs at Each Bloom Taxonomy Level to be used for writing the course Outcomes.

Cognitive Level	Illustrative Verbs	Definitions
Knowledge	arrange, define, describe, duplicate, identify, label, list, match, memorize, name, order, outline, recognize, relate, recall, repeat, reproduce, select, state	remembering previously learned information
Comprehension	classify, convert, defend, discuss, distinguish, estimate, explain, express, extend, generalize, give example(s), identify, indicate, infer, locate, paraphrase, predict, recognize, rewrite, report, restate, review, select, summarize, translate	grasping the meaning of information
Application	apply, change, choose, compute, demonstrate, discover, dramatize, employ, illustrate, interpret, manipulate, modify, operate, practice, predict, prepare, produce, relate schedule, show, sketch, solve, use write	applying knowledge to actual situations
Analysis	analyze, appraise, breakdown, calculate, categorize, classify, compare, contrast, criticize, derive, diagram, differentiate, discriminate, distinguish, examine, experiment, identify, illustrate, infer, interpret, model, outline, point out, question, relate, select, separate, subdivide, test	breaking down objects or ideas into simpler parts and seeing how the parts relate and are organized
Synthesis	arrange, assemble, categorize, collect, combine, comply, compose, construct, create, design, develop, devise, explain, formulate, generate, plan, prepare, propose, rearrange, reconstruct, relate, reorganize, revise, rewrite, set up, summarize, synthesize, tell, write	rearranging component ideas into a new whole
Evaluation	appraise, argue, assess, attach, choose, compare, conclude, contrast, defend, describe, discriminate, estimate, evaluate, explain, judge, justify, interpret, relate,	making judgments based on internal evidence or external criteria
		REGISTRAR Registrar

predict, rate, select, summarize, support,	
value	

anne REGISTRAR

SCHOOL of ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Year: 2022-2023 (ODD)	Semester:VI	Section: 6ECE4
Course Title	: Information theory and Coding	
Course Code	: ECE3012	
Type of Skill	: Skill Development	
Type of Activity	: Problem Solving	
Instructor in Charge	:Ms.Ashwini B	
Instructor for Section	: Ms.Ashwini.B	
Details about the activity	: Students were asked to submit assignmer	nt

Assignment1

- Consider the state diagram of the Markov source with a source S = {A, B, C, D} as shown in Fig. 1.
 - (i) Compute the state probabilities using state equations.
 - (ii)Find the entropy of each state and source entropy.
 - (iii) Find the entropy of the adjoint source.
 - (iv) Find G1, G2 and Verify that G1>G2>H

2) Markov Chain is a statistical model used to explain randomly changing systems where it is assumed that future states do not depend on past state but depend on their current state. Also it often used to model the probabilities of different states and the rates of transitions among them. Sketch the Markov Chain to predict the weather of tomorrow using given current statistics.

Model has only 3 states:= $S\{1, S2, S3\}$ and the name of each state is S1 = Sunny, 2 = Rainy S3 = Cloudy.

To establish the transition probabilities relationship between states following transition probabilities are taken.

P11=0.8,P12=0.05,P13=0.15,P21=0.2,P22=O.6,P23=0.2,

P31=0.2,P32=0.3,P33=0.5

i)What will be the average information content of states if p(1)=p(2)=p(3)=1/2

ii) Estimate source entropy for the designed markov model

iii)Average information content per symbol G1 & G2

Prema Joshi / souriece ogge.
General
General
consider the state diagram of black of source

$$s = ph, B, c, Dy$$
 as shown b figue.
find : jetale probability
ii) $G, \xi, G.$
 $p(A) + p(B) + p(c) + p(b) = 1$.
 $p(A) + p(B) + p(c) + p(b) = 1$.
 $p(B) + p(c) + p(b) = 1$.
 $p(B) + p(c) + p(b) + 0.4p(B) \rightarrow 0$
 $p(B) + p(c) + 0.4p(B) + 0.4p(B) \rightarrow 0$
 $p(B) + p(c) + 0.4p(B) + 0.4p(B) \rightarrow 0$
 $p(B) = 0.4p(A) + 0.4p(B) \rightarrow 0$
 $p(B) = 0.4p(B) + 0.4p(B) \rightarrow 0$
 $p(B) = 0.4p(B) + 0.4p(B) \rightarrow 0$
 $p(D) = 0.4p(B) + 0.4p(C) \rightarrow 0$
 $p(D) = 0.4p(B) + 0.4p(C) \rightarrow 0$
 $p(D) + p(B) = 1.6p(A) + 1.0p(C) \rightarrow p(A) + 1.0p(C) \rightarrow$

$$\Rightarrow e_{1}(\widehat{B} + e_{2}(\widehat{B} - \widehat{B}) = 0 + p(P) + p(P) = p_{1} = p_{1}$$

a s- ss, s2, s3 b Sunny Rainy cloudy Pin=0.8, P12=0.05, Pa2=0.6, P3,=0.2, P33=0.5 P13=0.15, Pa1=0.2, Pag=0.2, P32=0.3 i) State probability $\int_{C} p(2) + p(2) = p(3) = \frac{1}{2}$::) Entronphy : ii) G. & G2 0.3 0.15 0.2 7ª state 0.05 0.6 1/10 p(1) = 0.8 p(1) + 0.2 p(3) + 0.2 p(3)P(2) = 0.05 P(1) + 0.6 P(2) + 0.3 P(3)P(3) = 0.15 P(1) + 0.2 P(2) + 0.5 P(3)\$ 3rd-state (1)%50 and-state 0.2 50 .10 0,2 0.5 B 1/4 * Hy = P11 log_2 (1/11) + P12 log_2 (1/P12) + P13 log_2 (1/P13) 21.93 Gits/msg Symbols

H12 = P2 log 2 / P22 + P23 log 2 (VP23) + P23 log 2 (VP23) = 1.06 bits) sym #13 = P3, log (1/31) + B2 log (1/32) REGISTRAR

YOGESH.S 20201ECE0204 classmate 6ECE4 Consider the state diagram of marker's suite State perobability enteropy G+42 20.6 ald solo a 0.5 a Be lag Sof From the block diagram, state equations can be written as P(A)= 0.6P(A)+0.5P(D)-0 P(B) = 0.4 P(A) + 0.5P(D) - 0 P(L) = 0.6RC) + 0.5P(B) - 0 P(D) = 0.4P(L) + 0.5P(B) - 0As there are four unknowns, we can preparent one state in torms of other state i.e. 0 = > 0.4 P(A) = 0.5 P(D)P(A)=1.25P(D) (3 => 0.4 P(c) = 0.5 P(B) 62.00 P(i)= 1.25 P(D) ()=> P(D)= 0.4x1.25 P(D)+0.5P(B) P(D)=0.5 P(D) +0.5P(B) P(B) = P(D)97+ AH-(WKT; P(A)+P(B)+P(C)+P(D)=1 1.25 P(D)+P(D)+1.25P(D)+P(D)=1 4.25 P(D)=1 REGISTRAR P(B) = . P(D) =

P(A)= P(i)=1,25 P(D). annah int alt =1.25x = uldertook P(A) = P(C) = 5 ii) Entropy of each state is H: == Pij log = 1 Ri HA = PAA leg= + PAB leg= + PAC leg= + PAD leg= 1 PAD PAD PAD PAD HA = 0.9 71 bits /symbol och land HB - PBA 109-1 + PBB 109-1 + PBC 109-1 + PBD 109- 1 PBC PBC PBC PBC He = 1 buts / symbol Hc = Raleg, 1 + PeBleg, 1 + Pec leg, 1 + Pebleg, 2-PEA PEB PEB Pec Pec PCD He = 0.97 bits/symbol Ho = Pop leg = 1 + Poe leg = 1 + Poe leg = 1 + Poo leg = 1 Pop Pop Pop Pop Poe Poe Poe Poe Poo Ho=11bits/sym Enteropy of savarce H(s) = E PiH; H(S)=P(A). HA + P(B). HB + P(C). HC + P(D). HO 5 ×0971+ 2×1+5×0971+2×1 H(S) = 0.939 bits/sym

Date____ iii) Entropy & each interval of all the state GN=LEP, log_2(1) John 1st internal 4 X - 1092 - 2 GII = 2 bits/memory G12 = \$ 1.0575+0.8843+2 = 3.94(8bits/memory 2) S=25, 5, 5, 5 Sumy Rainy cloudy $\begin{array}{l} P_{11} = 0.8, P_{12} = 0.05 & P_{22} = 0.6 & P_{31} = 0.2 & P_{33} = 0.5 \\ P_{13} = 0.15, P_{11} = 0.2 & P_{23} = 0.2 & P_{32} = 0.3 & P(1) = P(2) = P(3) = 1/2 \end{array}$ Hei)=0.8/09/ +0.05/09/ +0.15/09/2- 0.15 = 0.25 + 0.216 + 0.41 = 0.8883 H(2)= 0.2 leg_ 1 + 0.6 leg_ 1 + 0.2 leg 1 = 0.46+0.44+0.46 4(2)=1-36

Itgalpur, Rajankunte, Yelahanka, Bengaluru – 560064

Course Code: ECE3020	Course Title: Computational Intelligence and Machine Learning Type of Course: Discipline Elective General Basket Theory				3	0	3	
Version No.	2.0					1	<u></u>	
Course Pre- requisites	Basic concepts o	Basic concepts of matrix operations, probability theory, vector and array representation.						
Anti-requisites	NIL							
Course Description	The course aim:	s to make the students to	o understand	I the mat	hemati	cal appr	oaches for	
	machine learnii	ng and computational in	ntelligence a	lgorithms	5. This	course (covers the	
	basic concepts	of Neural Networks whi	ch will enabl	e the stu	udents	to unde	rstand the	
	concepts of n	nachine learning. Conc	epts of Lin	ear moo	dels fo	r regre	ssion and	
	classification w	ill be discussed in such	way that st	udents c	an able	e to per	form data	
	analysis in prac	tical applications. In this	course, Con	nputatior	nal intel	ligence	algorithms	
	are included to	get better understanding	of Artificial in	ntelligeno	ce.			
Course Objective	The objective	of the course is to fa	amiliarize th	e learne	rs with	the co	oncepts of	
	Computational	Intelligence and Machin	e Learning a	and attai	n EMP I	OYABIL	ITY SKILLS	
	through PROBL	through PROBLEM SOLVING.						
Course Outcomes	On successful co	On successful completion of the course the students shall be able to:						
	1. Analyze	and fundamental concer	ots of neural r	networks				
	2. Implem	ent ML algorithms	to regressio	n, classi	fication	, cluste	ering, and	
	dimensi	dimensionality reduction						
	3. Categor	 Categorize the various pattern recognition techniques using machine learning into supervised and unsupervised 						
Course Content:		ervised and unsupervised	J.					
Module 1	Fundamentals	Assignment	Memory Re	call base	d	13	Sessions	
Topics:			Quizzes					
Introduction To Art	tificial Neural Ne	etworks (ANNs), Models	s Of A Neur	ron, Neu	ral Net	works-	Associated	
Graphs And Feedb	oack, Network A	Architectures And Know	wledge Repr	resentatio	n, Lea	rning A	lgorithms.	
Perceptron, Percept	ptron Converge	ence Theorem, Relation	on Between	n The	Percept	ron Ai	nd Bayes	
Classifier For A	Gaussian Envir	conment, and The Ba	ck-Propagati	ion Alg	orithm.	Introd	uction to	
Recurrent Neural n	etworks							
	Regression	Accignment/mini	Momony Do	call baca	4			
Module 2	and	nroiect			u	13	Sessions	
	classification		Quizzes					
Topics: Lincor models for a	Topics:							
probabilities and Gaussian distribution Linear basis function models for regression - Maximum								
likelihood and least squares, Regularized least squares, Bias variance decomposition-Bayesian linear								
regression, linear	discriminant and	alysis (LDA), Principal	Componen	t Analy	sis (PC	CA), Ind	lependent	
Component Analys	sis (ICA). Kerna	l linear discriminant an	alysis (KLD	A).	11			
Module 3	Kernel methods,	Assignment/mini project	Programing	/ simula		14	Sessions	

	Computational			
Taniaa	algorithms			
I OPICS: Kernel methods: Du	al representations	-Constructing kernels K.	means Algorithm Fuzzy K- n	neans Algorithm
Kohonen Self orga	ai representations	-Constructing Kerners, K-	r (Support Vector Machine)	Particle swarm
antimization Ant	aolony ontimizat	tion Dectorial foreging	Constia algorithm	i article swarm
optimizationAnt	colony optimiza	tion- Bacteriai loraging	. Genetic algorithm.	
List of Laboratory	Tasks: Nil			
Targeted Application	on & Tools that c	can be used:		
Targeted Applicatio	ns: This course is	contributed for placeme	nt in data science companies, re	esearch &
development work a	and also useful to	know the existing & deve	loping Artificial Intelligence.	
Professionally Used	Software: MatLa	ıb, Phython		
Text Books:				
1 Dattern recogniti	ion and machine l	aarning Christonhar M 1	Pishon TMH Springer 2010	
2 Algorithm Collec	tions for Digital S	Signal Processing Applica	tions Using Matlab E S Goni	Springer
Reference(s):	dons for Digital S	ignul i locessing Applica		springer.
Reference Books				
1. Machine Learnin	ng and Artificial Ir	ntelligence, Ameet V Jos	hi, Springer, 2020.	
Online Resources (e-books, notes, pj	pts, video lectures etc.):		
1. https://youtube.c	om/playlist?list=P	2L1xHD4vteKYVpaliy295p	g6_SY5qznc//	
2. <u>https://archive.ics</u>	s.uci.edu/mi/index	<u>x.pnp</u>		
3.https://presiuniv.k	nimbus.com/user	r#/home		
E-content:				
1. Mengyuan Zhu, Ji	awei Wang, Xiao	Yang, Yu Zhang, Linyu Z	Zhang, Hongqiang Ren, Bing W	/u, Lin Ye,
A review of the appl	ication of machine	e learning in water quality	v evaluation, Eco-Environment	& Health,
2022, ISSN 2772-98	50,	0.01		
https://doi.org/10.10	<u>16/j.eehl.2022.06.</u>	<u>001</u> .		
2 Lin Li Yici Cai	Oiang Zhou A su	rvev on machine learning	-based routing for VLSI physic	al design
Integration, Volume	86, 2022, Pages 5	51-56, ISSN 0167-9260,		
https://doi.org/10.10	<u>16/j.vlsi.2022.05.</u>	<u>003</u> .		
3. Vijaya B. Kolach	alama, Machine le	earning and pre-medical e	ducation, Artificial Intelligence	in Medicine,
Volume 129, 2022, 1	102313, ISSN 093	3-3657,		
<u>mups.//doi.org/10.10</u>	<u>10/J.atumed.2022.</u>	<u>102313</u> .		
4. Sergio Ledesma.	Mario-Alberto Ib	arra-Manzano. Dora-Luz	Almanza-Oieda, Juan Gabriel	Avina-Cervantes.
Eduardo Cabal-Yepe	ez, On removing c	onflicts for machine learn	ing, Expert Systems with Appli	ications,
Volume 206, 2022, 117835, ISSN 0957-4174,				
https://doi.org/10.1016/j.eswa.2022.117835				
Tonics relevant to "	EMPLOVARI	ITY SKILLS". Artificit	al Neural Networks, Learning A	loorithms linear
regression for de	veloping Employ	ability Skills through Pr	oblem Solving methodologies	. This is attained
through assessment component mentioned in course handout.				
Catalogue	Mr. G Tirumala	Vasu		
prepared by				
Recommended by	BOS Meeting N	O: 15th, Dated BOS 28/0	7/2022	
the Board of			CHURCH UNCY U	
Studies on			REGISTRAR	150 atta
			a constant	

Date of Approval	Academic Council Meeting No. 18th, Dated 03/08/2022
by the Academic	
Council	

anne REGISTRAR

PRESIDENCY UNIVERSITY

Presidency University Act, 2013 of the Karnataka Act No. 41 of 2013 | Established under Section 2(f) of UGC Act, 1956 Approved by AICTE, New Delhi

A-2 [2022] COURSE HAND OUT

SCHOOL	: SOE
DEPT.	: ECE
DATE OF ISSUE	: 27/08/2022
NAME OF THE PROGRAM	: B. Tech (ECE)
P.R.C. APPROVAL REF.	: PU/AC-18.4/ECE15/ECE/2022-24
SEMESTER/YEAR	:
COURSE TITLE & CODE	: Computational Intelligence and Machine Learning & CE 3020
COURSE CREDIT STRUCTURE	: 3-0-3
CONTACT HOURS	: 3
COURSE INSTRUCTORS	: Mr. G. Tirumala Vasu
INSTRUCTOR INCHARGE	: Mr. G. Tirumala Vasu

PROGRAM OUTCOMES:

Graduates of the B. Tech. Program in Electronics and Communication Engineering will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

COURSE PREREQUISITES: Basic concepts of matrix operations, probability theory, vector and array representation. etc.,

COURSE DESCRIPTION: The course aims to make the students to understand the mathematical approaches for machine learning and computational intelligence algorithms. This course covers the basic concepts of Neural Networks which will enable the students to understand the concepts of machine learning. Concepts of Linear models for regression and classification will be discussed in such way that students can able to perform data analysis in practical applications. In this course, Computational intelligence algorithms are included to get better understanding of Artificial intelligence.

COURSE OBJECTIVES: The objective of the course is to familiarize the learners with the concepts of Computational Intelligence and Machine Learning and attain EMPLOYABILITY SKILLS through PROBLEM SOLVING.

COURSE OUTCOMES:

On successful completion of the course the students shall be able to:

CO1: Analyze the fundamental concepts of neural networks

CO2: Implement ML algorithms to regression, classification, clustering, and dimensionality reduction

CO3: Categorize the various pattern recognition techniques using machine learning into supervised and unsupervised.

MAPPING OF C.O. WITH P.O.

[H-HIGH, M- MODERATE, L-LOW]

1	Н				L	
2	Н		М	М		М
3	Н	М		н		

COURSE CONTENT (SYLLABUS):

Module: 1: Linear Models for Regression: Introduction, Linear Basis Function Models, Maximum likelihood and least squares, Geometry of least squares, Sequential learning, Regularized least squares. The Bias-Variance Decomposition, Introduction to Recurrent Neural networks. [12 hours] [Knowledge]

Module: 2: Linear Models For Classification: Introduction, Discriminant Functions- Two classes, Multiple classes, Least squares for classification, LDA, KLDA, PCA, The perceptron algorithm, Probabilistic Discriminative Models-Logistic regression, Iterative reweighted least squares.

[13 hours] [Application]

Module 3: Clustering: K-Means, Fuzzy K-Means algorithms. Self-Organizing Maps. Optimization Algorithms: Introduction, Particle swarm optimization-Genetic algorithm-Ant colony optimization- Bacterial foroging

[10 hours] [Comprehension]

SKILL SETS TO BE DEVLOPED:

- 1. An attitude of enquiry.
- 2. Confidence and ability to tackle new problems.
- 3. Ability to interpret events and results.
- 4. Write reports.
- 5. The ability to follow standard /Legal procedures.
- 6. An awareness of the Professional Ethics.

DELIVERY PROCEDURE (PEDAGOGY): Lectures will be conducted with aid of Microsoft Teams. Assignments based on course contents will be given to the students at the end of each unit/topic and will be evaluated at regular interval.

SELF-LEARNING TOPICS: Sequential models: Markov model, Hidden-Markov Model (HMM). Linear Dynamical Systems (LDS).

BLENDED LEARNING USING VIDEOS: PCA and SVM Classification.

FLIPPED CLASS ROOM TOPICS: Maximum likelihood and least squares.

REFERENCE MATERIALS: Textbooks, reference books, any other resources, like webpages.

Text Book(s):

(i) Text Books:

- 1. Pattern recognition and machine learning, Christopher M. Bishop, TMH, Springer, 2010
- 2. Algorithm Collections for Digital Signal Processing Applications Using Matlab, E.S. Gopi, Springer.

(ii) Reference book:

1. Machine Learning and Artificial Intelligence, Ameet V Joshi, Springer, 2020. (iii) Class Notes:

(iv) E-content:

1. Mengyuan Zhu, Jiawei Wang, Xiao Yang, Yu Zhang, Linyu Zhang, Hongqiang Ren, Bing Wu, Lin Ye, A review of the application of machine learning in water quality evaluation, Eco-Environment & Health, 2022, ISSN 2772-9850, https://doi.org/10.1016/j.eehl.2022.06.001.

2. Lin Li, Yici Cai, Qiang Zhou, A survey on machine learning-based routing for VLSI physical design, Integration, Volume 86, 2022, Pages 51-56, ISSN 0167-9260, https://doi.org/10.1016/j.vlsi.2022.05.003.

3. Vijaya B. Kolachalama, Machine learning and pre-medical education, Artificial Intelligence in Medicine, Volume 129, 2022, 102313, ISSN 0933-3657, https://doi.org/10.1016/j.artmed.2022.102313.

4. Sergio Ledesma, Mario-Alberto Ibarra-Manzano, Dora-Luz Almanza-Ojeda, Juan Gabriel Avina-Cervantes, Eduardo Cabal-Yepez, On removing conflicts for machine learning, Expert Systems with Applications, Volume 206, 2022, 117835, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2022.117835.

GUIDELINES TO STUDENTS:

Students have to attend classes regularly and follow the session very carefully. Here in handout we mentioned pre requisitions, go through the topics once. The students are directed to maintain separate note book to write important discussions/key points during the lecture

PRESIDENCY UNIVERSITY LIBRARY LINK: https://presiuniv.knimbus.com/user#/home

COURSE SCHEDULE:

Sl. No.	ACTIVITY	STARTING	CONCLUDING	TOTAL NUMBER
		DATE	DATE	OF PERIODS
1.	Over View of the course			01
2.	Module : 01			12
3.	Module 01 revision			1
4.	Assignment 1			
5.	Module : 02			13
6.	Module 02 revision			1
7.	Mid Term Examination			NA
8.	Mid Term Paper Discussion		0	03
9.	Module:03		esunce	10
			REGISTRAR	Contraction of the second

8	Assignment 2		
9	End Term Examination		NA
		TOTAL	41

SCHEDULE OF INSTRUCTION

SI.	Session No/	Lesson Title	Topics	CO.	Delivery	Reference
No	Date*			NO	Mode	
1	L1		Overview of the course		Board/PPT	NA
2	L2	CourseandProgramIntegration			Board/PPT	NA
3	L3		Introduction	CO1	Board/PPT	T1
4	L4	Linear Models for Regression	Linear Basis Function Models	CO1	Board/PPT	T1
5	L5		Linear Basis Function Models	CO1	Board/PPT	T1
6	L6	-	Maximum likelihood and least squares	CO1	Board/PPT	T1
7	L7	-	Maximum likelihood and least squares	CO1	Board/PPT	T1
8	L8	-	Geometry of least squares	CO1	Board/PPT	T1
9	L9		Sequential learning	CO1	Board/PPT	T1
10	L10		Sequential learning	CO1	Board/PPT	T1
11	L11		Regularized least squares	CO1	Board/PPT	T1
12	L12	Bias-Variance	The Bias-Variance Decomposition	CO1	Board/PPT	T1
13	L13		Test-1 discussion and Module-1 Revision	CO1	Board/PPT	T1
14	L14	Bias-Variance	The Bias-Variance Decomposition	CO1	Board/PPT	T1
15	L15		Bayesian Linear	COl	Board/PPT	T1
_				C REUIST	* WGALOK	Page 8 of 14

			Regression			
		Module 1 comp	bleted, Module 2 Started	1	1	1
16	L16	Linear Models For Classification	Introduction	CO2	Board/PPT	T1
17	L17	Discriminant Functions	Discriminant Functions- Two classes	CO2	Board/PPT	T1
18	L18		Multiple classes	CO2	Board/PPT	T1
19	L19		Least squares for classification	CO2	Board/PPT	T1
20	L20		Least squares for classification	CO2	Board/PPT	T1
21	L21	Dimensionality Reduction	LDA	CO2	Board/PPT	T1
22	L22	Reduction	LDA	CO2	Board/PPT	T1
23	L23		РСА	CO2	Board/PPT	T1
24	L24		РСА	CO2	Board/PPT	T1
25	L25		The perceptron algorithm	CO2	Board/PPT	T1
26	L26	Probabilistic	Logistic regression	CO2	Board/PPT	T1
27	L27	Models	Logistic regression	CO2	Board/PPT	T1
28	L28		Iterative reweighted least squares	CO2	Board/PPT	T1
29	L29	Revision	Module -2 Revision	CO2	Board/PPT	T1
				I	1	I
30	L30		K-Means algorithm	CO3	Board/PPT	T1,T2
31	L31	Clustering	K-Means algorithm	CO3	Board/PPT	T1,T2
32	L32		Fuzzy K-Means algorithm	CO3	Board/PPT	T1,T2
33	L33		Test-2 Discussion	CO3	Board/PPT	T1,T2
34	L34		Self-Organizing Map	CO3	Board/PPT	T1,T2
35	L35	Optimization Algorithms	Particle swarm optimization	CO3	Board/PPT	T1,T2
36	L36		Particle swarm optimization	CO3	Board/PPT	T1,T2
				REGIST	RAR Registrar	Page 9 of 14

37	L37	Ant	colony	CO3	Board/PPT	T1,T2
		optimization				
38	L38	Ant optimization	colony	CO3	Board/PPT	T1,T2
39	L39	Numerical prob	olems	CO3	Board/PPT	T1,T2
40	L40	Numerical prob	olems	CO3	Board/PPT	T1,T2
41	L41	Module -3 Revi	ision	CO3	Board/PPT	T1,T2

* These dates are only indicative - applicable to one section handled by subject IC. Dates will vary from section to section.

Topics relevant to "EMPLOYABILITY SKILLS": Artificial Neural Networks, Learning Algorithms, linear regression for developing **Employability Skills** through **Problem Solving methodologies**. This is attained through the **Assignment** as mentioned in the assessment component.

ASSESSMENT SCHEDULE:

Sl	Assessme	Contents	CO. NO	Duratio	Mark	Weighta	Venue,
· N	nt type			n	S	ge	DATE & time
0				In Minute s			& I IIVIE
1.	Mid Term	Module 1,2	CO1,CO2	90 min	60	30%	
2.	End term Examinati on	Module 1,2,3	CO1,CO2,C O3	180 min	100	50%	
3.	Assignme nt	-	CO1,CO2,C O3	NA	20	10%	
4.	Assignme nt		CO1, CO2, CO3	NA	10	5%	
5.	Assignme nt-Review of digital / e-	1. <u>https://ieeexplore.ieee.org/document/96</u> 70709	CO1,CO2,C O3	NA	10	5%	Will be announce d one week
	resources from Pres. Univ. link given in	2. <u>https://ieeexplore.ieee.org/document/96</u> 76634					prior to submissi on
	the References Section - (Mandator	3. <u>https://ieeexplore.ieee.org/document/96</u> 91296		0			
	y to submit	4. <u>https://ieeexplore.ieee.org/document/97</u>		REG	STRAR	ACY UNITER POINT	

screenshot	<u>93641</u>			
accessing				
digital				
resource.				
Otherwise				
it will not				
be				
evaluated)				
, í				

COURSE CLEARANCE CRITERIA: A minimum of 75% attendance is required to attend the end term exam. Makeup policy will be only as per academic regulation. There will be no make-up for ASSIGNMENT and QUIZ

	Method of Assessment for Courses with Credit Structure $(L - T - 0)$ or $(L - 0 - 0)$		
	Components of Continuous Assessments	Weightage (% of Total Marks)	Duration of Assessm ent
1.	Mid Term	30%	1.5 hour
	This Component of continuous assessment shall consist of at least TWO (02) of the following: (1) Assignment(s)		
2.	(2) Quiz	20%	NA
3.	End Term Final Examinations	50%	3 hours
	Total	100%	

MAKEUP POLICY:

If the student misses an evaluation component, he/she may be granted a make-up. In case of an absence that is foreseen, make-up request should be personally made to the Instructor-in-Charge, well ahead of the scheduled evaluation component. Reasons for unanticipated absence that qualify a student to apply for make-up include medical emergencies or personal exigencies. In such an event, the student should contact the Instructor-in-Charge as soon as practically possible.

CONTACT TIMINGS IN THE CHAMBER FOR ANY DISCUSSIONS: It will be announced in the class. Interested students may meet the Instructor In-charge during the Chamber Consultation Hour to clear doubts.

SAMPLE THOUGHT PROVOKING QUESTIONS:

1 Explain how sequential learning is more benefited than Maximum 10 1 Comprehension 2 Why can't simple random sampling of training data set and validation set work for a classification problem 5 2 Comprehension	SL NO	QUESTION	MARKS	CO. NO	BLOOM'S LEVEL
2 Why can't simple random sampling of training data set and validation set work for a classification problem 5 2 Comprehension	1	Explain how sequential learning is more benefited than Maximum likelihood estimation.	10	1	Comprehension
	2	Why can't simple random sampling of training data set and validation set work for a classification problem	5 Jan	2	Comprehension

3	How computational	algorithms	are	more	effective	than	natural	10	3	Application
	algorithms.									

Target set for course Outcome attainment:

Sl. No	CO. No.	Course Outcomes	Targetsetforattainmentinpercentage
1	CO1	Describe the fundamental concepts of neural networks	50%
2	CO2	Apply ML algorithms to regression, classification, clustering, and dimensionality reduction	40%
3	CO3	Discuss various computational intelligence techniques	50%

Signature of the course Instructor:

This course has been duly verified Approved by the D.A.C.

Signature of the Chairperson D.A.C.

Course Completion Remarks & Self-Assessment. [This has to be filled after the completion of the course]

[Please mention about the course coverage details w.r.t. the schedule prepared and implemented. Any specific suggestions to incorporate in the course content. Any Innovative practices followed and its experience. Any specific suggestions from the students about the content, Delivery, Evaluation etc.]

Sl.no.	Activity	Scheduled Completion Date	Actual Completion Date	Remarks
	As listed in the course Schedule			
1	Midterm Examination			
3	End term Examination			
4	Mini Project / Assignment			
			REGISTRAR	Y UNITED SITE

&ANGALORE

Any specific suggestion/Observations on content/coverage/pedagogical methods used etc.:

Course Outcome Attainment:

Sl.no	C.O. No.	Course Outcomes	Target set for attainment in percentage	Actual C.O. Attainment In Percentage	Remarks attainment &Measures enhance attainment	on to the
01	CO1	Analyze and formulate fundamental concepts of neural networks	50%			
02	CO2	Implement, customize and apply ML algorithms to regression, classification, clustering, and dimensionality reduction	40%			
03	CO3	Summarize various computational intelligence techniques.	50%			

Name and signature of the Faculty member:

D.A.C. observation and approval:

BLOOM'S TAXONOMY

Learning Outcomes Verbs at Each Bloom Taxonomy Level to be used for writing the course Outcomes.

Cognitive Level	Illustrative Verbs	Definitions
Knowledge	arrange, define, describe, duplicate, identify, label, list, match, memorize, name, order, outline, recognize, relate, recall, repeat, reproduce, select, state	remembering previously learned information
Comprehension	classify, convert, defend, discuss, distinguish, estimate, explain, express, extend, generalize, give example(s), identify, indicate, infer, locate, paraphrase, predict, recognize, rewrite, report, restate, review, select, summarize, translate	grasping the meaning of information
Application	apply, change, choose, compute, demonstrate, discover, dramatize, employ, illustrate, interpret,	applying knowledge to actual situations
		* Page 13 of 14

	manipulate, modify, operate, practice, predict, prepare, produce, relate schedule, show, sketch, solve, use write	
Analysis	analyze, appraise, breakdown, calculate, categorize, classify, compare, contrast, criticize, derive, diagram, differentiate, discriminate, distinguish, examine, experiment, identify, illustrate, infer, interpret, model, outline, point out, question, relate, select, separate, subdivide, test	breaking down objects or ideas into simpler parts and seeing how the parts relate and are organized
Synthesis	arrange, assemble, categorize, collect, combine, comply, compose, construct, create, design, develop, devise, explain, formulate, generate, plan, prepare, propose, rearrange, reconstruct, relate, reorganize, revise, rewrite, set up, summarize, synthesize, tell, write	rearranging component ideas into a new whole
Evaluation	appraise, argue, assess, attach, choose, compare, conclude, contrast, defend, describe, discriminate, estimate, evaluate, explain, judge, justify, interpret, relate, predict, rate, select, summarize, support, value	making judgments based on internal evidence or external criteria

anne REGISTRAR

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Year: 2022-2023 (ODD)	Semester: V	Section: 5ECE3
Course Title	: Computational Intellige	ence and Machine Learning
Course Code	: ECE3020	
Type of Skill	: Employability Skills	
Type of Activity	: Problem Solving	
Instructor in Charge	: Mr. G.Tirumala Vasu	
Instructor for Section	: Mr. G.Tirumala Vasu	
Details about the activity	: Students were asked to	submit assignment

Assignment (Instruction to Students)

1. Students are supposed to upload the following documents in single folder. Folder name should be your roll numbers (eg 20201ECE0149)

- a. PPT
- b. Printable document in PDF,
- c. Data set (Link given in xlsx sheet)
- 2. PPT should include data description and analysis the data with PCA and SVM

3. While doing data analysis, **screenshot** of MATLAB (or other tool that you used) to be include in PPT.

4. Student Batches details and Data set links are mentioned in attachement.

5. If any report not follow the above instructions their reports should **not be evaluated**.

REGISTRAR

	Pres	sidency University, Bengaluru	
		School of Engineering	
		5ECE3-CIML	
		Mini Project	
S.No.	ID NO	STUDENT NAME	Data set Link
1	20201ECE0131	DANDUPROLU HEMANTH KUMAR	https://archive.ics.uci.edu/ml/datasets/Abalone
2	20201ECE0133	ROKKAM ANUDEEP REDDY	https://archive.ics.uci.edu/ml/datasets/LED+Display+Domain
3	20201ECE0134	J CALVIN KENNETH ANTHONY	https://archive.ics.uci.edu/ml/datasets/Arrhythmia
4	20201ECE0135	MACHA HARISH	https://archive.ics.uci.edu/ml/datasets/Glass+Identification
5	20201ECE0137	B SAI MADHURI	https://archive.ics.uci.edu/ml/datasets/MONK%27s+Problems
6	20201ECE0141	KETHAN DURGA AKASH	https://archive.ics.uci.edu/ml/datasets/Audiology+%28Original%29
7	20201ECE0146	Y PREETHI	https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
8	20201ECE0147	KUNDA GANESH	https://archive.ics.uci.edu/ml/datasets/Japanese+Credit+Screening
9	20201ECE0149	PRAVEEN S	https://archive.ics.uci.edu/ml/datasets/Shuttle+Landing+Control
10	20201ECE0150	DEEPAK KARALAPATI	https://archive.ics.uci.edu/ml/datasets/Credit+Approval
11	20201ECE0151	SNEHAN THEJASWI T	https://archive.ics.uci.edu/ml/datasets/Echocardiogram
12	20201ECE0155	NISCHITHA V	https://archive.ics.uci.edu/ml/datasets/SPECTF+Heart
13	20201ECE0156	K SHIVA RAMA KRISHNA	https://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
14	20201ECE0157	B BHAVANI SANKAR	https://archive.ics.uci.edu/ml/datasets/CMU+Face+Images
15	20201ECE0158	RAMDAS T R	https://archive.ics.uci.edu/ml/datasets/Adult
16	20201ECE0159	SUCHISMITA BANIK	https://archive.ics.uci.edu/ml/datasets/Lung+Cancer
17	20201ECE0160	J ABHINAV REDDY	https://archive.ics.uci.edu/ml/datasets/Low+Resolution+Spectrometer
18	20201ECE0163	ABHIJEET S P	https://archive.ics.uci.edu/ml/datasets/Badges
19	20201ECE0164	ADARSH	https://archive.ics.uci.edu/ml/datasets/Lenses
20	20201ECE0165	ANUPAMA KUMARI P	https://archive.ics.uci.edu/ml/datasets/Connect-4
21	20201ECE0166	ANUSHA N	https://archive.ics.uci.edu/ml/datasets/Primary+Tumor
22	20201ECE0167	ARPITHA M P	https://archive.ics.uci.edu/ml/datasets/Heart+Disease
23	20201ECE0168	AYUSH KUMAR	https://archive.ics.uci.edu/ml/datasets/Haberman%27s+Survival
24	20201ECE0169	BALU P	https://archive.ics.uci.edu/ml/datasets/Artificial+Characters
25	20201ECE0170	BHARATH M	https://archive.ics.uci.edu/ml/datasets/Mechanical+Analysis
26	20201ECE0174	CHATHRUSH MADDINENI	https://archive.ics.uci.edu/ml/datasets/Mushroom
27	20201ECE0175	CLEVEN B	https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
28	20201ECE0176	DHANYA S	https://archive.ics.uci.edu/ml/datasets/Balance+Scale
29	20201ECE0177	DHARSHAN.D	https://archive.ics.uci.edu/ml/datasets/Dermatology
30	20201ECE0178	ESHWAR ANIL KUMAR DADGE	https://archive.ics.ucjuudi/not datasets/Page+Blocks+Classification

REGISTRAR

31	20201ECE0179	JEEVAN N	https://archive.ics.uci.edu/ml/datasets/Annealing
32	20201ECE0180	K.RAGHAVENDRA	https://archive.ics.uci.edu/ml/datasets/Trains
33	20201ECE0182	KEERTHAN T	https://archive.ics.uci.edu/ml/datasets/Nursery
34	20201ECE0183	KESHAV MURTHY M	https://archive.ics.uci.edu/ml/datasets/Audiology+%28Standardized%29
35	20201ECE0184	KRUTHIK G	https://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
36	20201ECE0185	MANOJ KUMAR H V	https://archive.ics.uci.edu/ml/datasets/Robot+Execution+Failures
37	20201ECE0186	MANSOOR PASHA	https://archive.ics.uci.edu/ml/datasets/Pittsburgh+Bridges
38	20201ECE0188	N P SAKAMBARI	https://archive.ics.uci.edu/ml/datasets/Poker+Hand
39	20201ECE0189	NAMITHA K	https://archive.ics.uci.edu/ml/datasets/Hepatitis
40	20201ECE0190	NITIN HALEMANI	https://archive.ics.uci.edu/ml/datasets/Waveform+Database+Generator+%28Version+2%29
41	20201ECE0191	NOOR UL HUDA	https://archive.ics.uci.edu/ml/datasets/Balloons
42	20201ECE0192	PRASHANTH N	https://archive.ics.uci.edu/ml/datasets/Gisette
43	20201ECE0193	PRITHAM ASHOK RUDRAPUR	https://archive.ics.uci.edu/ml/datasets/Ecoli
44	20201ECE0194	PUNEETHA A	https://archive.ics.uci.edu/ml/datasets/Chess+%28King-Rook+vs.+King-Knight%29
45	20201ECE0195	R SHIVANI	https://archive.ics.uci.edu/ml/datasets/University
46	20201ECE0196	RAHUL	https://archive.ics.uci.edu/ml/datasets/Car+Evaluation
47	20201ECE0197	ROHAN S	https://archive.ics.uci.edu/ml/datasets/Image+Segmentation
48	20201ECE0198	SAJULIN JOHANAN	https://archive.ics.uci.edu/ml/datasets/Volcanoes+on+Venus+-+JARtool+experiment
49	20201ECE0199	SHASHANK GANAPATI NAIK	https://archive.ics.uci.edu/ml/datasets/Cylinder+Bands
50	20201ECE0200	SHASHANK N	https://archive.ics.uci.edu/ml/datasets/Yeast
51	20201ECE0202	TEJASWINI HD	https://archive.ics.uci.edu/ml/datasets/Parkinsons
52	20211LEC0018	HARSHA A C	https://archive.ics.uci.edu/ml/datasets/Census+Income
53	20211LEC0019	SHASHI KUMAR P	https://archive.ics.uci.edu/ml/datasets/Statlog+%28Vehicle+Silhouettes%29
54	20211LEC0020	MAHESH	https://archive.ics.uci.edu/ml/datasets/Iris
55	20211LEC0021	NAGENDRA B D	https://archive.ics.uci.edu/ml/datasets/Australian+Sign+Language+signs
56	20211LEC0022	MANOJ N	https://archive.ics.uci.edu/ml/datasets/Chess+%28King-Rook+vs.+King%29
57	20211LEC0023	YUVARAJ H	https://archive.ics.uci.edu/ml/datasets/ISOLET
58	20211LEC0024	ATISHAY PANDEY	https://archive.ics.uci.edu/ml/datasets/Flags
59	20211LEC0025	SUMITH SAMUEL H	https://archive.ics.uci.edu/ml/datasets/Covertype

COMPUTATIONAL INTELLIGENCE AND MARSH COMPUTATIONAL INTELLIGENCE AND MA COMPUTATIONAL INTELLIGENCE AND MA Topic: The Monk's Problems Tirumala vasu E0209
--

UL

REGISTRAR

HINE LEARNING

DATA DESCRIPTION

algorithms. The MONK's problem were the basis of a first international comparison of learning

REGISTRAR

91-197, Carnegie Mellon University in Dec 1991 Bratko, B. Cestnik, J. Cheng, K. De Jong, has been published as Technical Report CS-CMU-Comparison of Different Learning algorithms" by S.B. Thrun, J. Bala, E. Bloedorn, I. The result of this comparison is summarized in "The MONK's Problems - A Performance

(often they were the creators of the various methods). collection of researchers, each of whom was an advocate of the technique they tested One significant characteristic of this comparison is that it was performed by a

generalization behavior of the learning techniques as applied by knowledgeable users. person advocating a specific learning method, and more accurately reflect the In this sense, the results are less biased than in comparisons performed by a single

same (described below). One of the MONK's problems has noise added. For each problem, the domain has been partitioned into a train and test set. There are three MONK's problems. The domains for all MONK's problems are the

DATASET INFORMATION

- Number of Instances: 432
- Number of Attributes: 8 (including class attribute)

une

REGISTRAR

- Attribute information:
- 1. class: 0, 1
- 2. al: 1, 2, 3
- 3. a2: 1, 2, 3
- 4. a3: 1, 2
- 5. 84: 1, 2, 3
- 6. a5: 1, 2, 3, 4
- 7. a6: 1, 2
- 8. Id: (A unique symbol for each instance)
- Missing Attribute Values: None
- Target Concepts associated to the MONK's problem:

MONK-1: (a1 = a2) or (a5 = 1)

MONK-2: EXACTLY TWO of {a1 = 1, a2 = 1, a3 = 1, a4 = 1, a5 = 1, a6 = 1}

MONK-3: (a5 = 3 and a4 = 1) or (a5 /= 4 and a2 /= 3)

(5% class noise added to the training set)

VALIDATION CONFUSION MATRIX AND VALIDATION ROC CURVE

REGISTRAR

REGISTRAR

Ch. J U

CONCLUSION

We can conclude that SVM is better then PCA, as the accuracy of SVM is higher than that of PCA.

un

REGISTRAR

The size of given data was 7*432.

The time taken for training each model of classification varies with the Number of Attributes and Number of Instances.

The accuracy increases with more number of attributes and instances.

Missing attributes and null values must be removed and data must be cleaned before applying any model for classification.

Matlab is a easily accessible platform to analyse a dataset.

VEASULENCY CROMP O V E A YEARS DF ACADEMIC WISDOM

Itgalpur, Rajankunte, Yelahanka, Bengaluru – 560064

Course Code: ECE3112	Course Title: Ar Engineering	ntenna and Microwave			3	0	3
	8 8			L- P- C			
	Type of Course:	Program Core Theory					
Version No.	1.0						
Course Pre-	Basic concepts o	f Cartesian, cylindrical a	and spheric	cal coordin	ate syst	ems. D	ifferential
requisites	length (dl), surfac	e (ds) and volume (dv). I	Line, surfac	ce and volu	me inte	grals. D	ivergence
	and curl operation	ns. Fundamentals of stati	ic electric	and magne	tic field	s which	includes
	electric field der	nsity and intensity, mag	netic field	l density a	ind inte	nsity, N	Aaxwell's
	equations, bounda	ary conditions.					
Anti-requisites	NIL						
Course	This course will in	ntroduce the basics of elec	etromagnet	ic radiation	and pro	pagation	n and also
Description	deals with how VI	HF and UHF antennas are	used in mi	crowave co	mmunic	ation. T	his course
	gives a comprehe	nsive coverage of a wide	variety of a	antennas ar	id propa	gation to	echniques
	validate the conce	ents of mathematical mode	eling hehind	d the anten	na design	ш орро 1	itunity to
	validate the conce	pts of mathematical mode		a the untern	ia acoigi	1.	
Course	The objective of t	he course is to familiarize	the learne	rs with the	concept	s of An	tenna
Objective	and Microwave I	Engineering and attain <u>SI</u>	KILL DEVEL	OPMENT th	hrough	Proble	<u>m</u>
Course	On successful c	ompletion of the cours	e the stud	lents shall	be abl	e to:	
Outcomes		F					
	1. Summaria	ze the fundamental param	neters and 1	Radiation P	attern o	f Differ	ent Types
	of Antenn 2 Discuss th	185. he working and design of V	VHF UHF	and Micro	wave Ar	ntennas	
	3. Analysis	of how the electrom	agnetic v	vave is p	ropagat	tes in	different
	atmosphe	eric conditions as a grou	und, space	, sky wave			
Course							
Course Content:							
	Fundamentals of		Memory	Recall base	d		
Module 1	Antenna	Assignment	Quizzes		u	10	Sessions
Topics:	parameters						
Introduction, Bas	sic radiation Equati	on, Radiation Pattern., B	eam Area,	Beam Eff	iciency,	Radiati	on Power
density, Field Reg	ions, Radiation Inte	nsity, Directivity and Gain	n Bandwid	th, Antenna	Apertu	es, Fro	nt to back
ratio, Friis Transm	nission formula, Ant	tenna Theorems.					
	Basic antenna		Design ar	nd analysis	of		<i>a</i> .
Module 2	Design	Assignment / Quiz	parameter	rs (simulation	on)	11	Sessions
Topics:	antannaa Dhamhia	Antonno Eoldod Dinolo	Antonno	Vaci IIda A	ntonno	Haliaal	Antonno
and Horn Antenna	s Micro strip Anter	anas Reflector Antennas	Antenna, Casseorain	Δ ntenna F	Seed met	hods of	Parabolic
Reflectors, Freque	Reflectors Frequency independent Antennas						
, I							
Module 3	Wave	Assignment	Memory I	Recall base	d	12	Sessions
Topics:	Topaganon		Quizzes	<u>()</u>	10.		
Wave Propagation	n- Introduction, G	Fround wave Propagation	n, Classifi	cation of	Electror	nagnetio	e Waves,
Reflection of Radi	o waves by earth sur	rface. Space wave Propaga	ation- consi	iderations	Tropospl	neric pro	opagation,
					1.1	7+1	

Sky wave propagation- structure of ionosphere, Propagation of radio waves through ionosphere. Mechanism of wave bending and critical frequency. MUF, skip distance, Relation between MUF and skip distance.

Module 4	Passive and active microwave devices	Assignment	Memory R based Quizzes	Recall	12 Sessions
----------	--------------------------------------	------------	---------------------------	--------	-------------

Topics

Microwave Passive components: Directional Coupler, Power Divider, Magic Tee, attenuator, resonator, Principles of Microwave Semiconductor Devices: Gunn Diodes, IMPATT diodes, Schottky Barrier diodes, PIN diodes, Microwave tubes: Klystron, TWT, Magnetron. Impedance transformation, Impedance Matching, Microwave Filter Design, RF and Microwave Amplifier Design, Microwave Power amplifier Design, Low Noise Amplifier Design, Microwave Mixer Design, Microwave Oscillator Design.

Targeted Application & Tools that can be used:

This course is contributed for placement in core companies, research & development work and also useful to know the existing & developing communications. **Professionally Used Software: MATLAB, HFSS.**

Text Books:

1. Antennas and wave propagation – John D. Kraus and Ronald J. Marhefka and Ahmad S.Khan, TMH, New Delhi, 5th Ed., (special Indian Edition), 2017

2. Antenna Analysis and Design, Constantine A. Balanis, Wiley Publications, 4th Ed, 2016.

Reference Books:

1. Antenna Theory and Design, Warren L. Stutzman, Gary A. Thiele, Wiley Publications, 3rd Edition.

2. Electromagnetic Waves and Radiating Systems - E.C. Jordan and K.G. Balmain, PHI, 2nd ed., 2000.

Online Resources (e-books, notes, ppts, video lectures etc.):

1. https://youtube.com/playlist?list=PL3UZlxOnyu9CRoBFsG5x-VqYeC69FmMZT

2. https://www.sciencedirect.com/topics/engineering/radio-wave

3. https://www.sciencedirect.com/topics/physics-and-astronomy/wave-propagation

4. <u>https://presiuniv.knimbus.com/user#/home</u>

E-content:

1. Zhe Chen, Xiao-Ting Yuan, Jian Ren, Tao Yuan, An ultra-wideband MIMO antenna for 5G smartphone, AEU - International Journal of Electronics and Communications, Volume 154, 2022, 154301, ISSN 1434-8411,

https://doi.org/10.1016/j.aeue.2022.154301.

2. Jian Ren, Zheng-Yu Xiong, Jing-Ya Deng, Jia-Yuan Yin, Yin Zhang, Li-Xin Guo, A compact single-layer filtering patch antenna with wide harmonic suppression and enhanced bandwidth, AEU - International Journal of Electronics and Communications, Volume 145, 2022, 154083, ISSN 1434-8411, https://doi.org/10.1016/j.aeue.2021.154083.

3. Jian Ren, Zheng-Yu Xiong, Jing-Ya Deng, Jia-Yuan Yin, Yin Zhang, Li-Xin Guo, A compact single-layer filtering patch antenna with wide harmonic suppression and enhanced bandwidth, AEU - International Journal of Electronics and Communications, Volume 145, 2022, 154083, ISSN 1434-8411, https://doi.org/10.1016/j.aeue.2021.154083.

4. Xiaokun Yang, Linwei Cui, Zhao Ding, Zhengping Zhang, A 5G filtering antenna simultaneously featuring high selectivity and band notch, AEU - International Journal of Electronics and Communications, Volume 153, 2022, 154299, ISSN 1434-8411,

2022, 134299, 13510 1434-8411, https://doi.org/10.1016/j.aeue.2022.154299.

REGISTRAR

Topics relevant to "SKILL DEVELOPMENT": , Basic radiation Equation, Radiation Pattern., Beam Area,
Beam Efficiency, Radiation Power density, Field Regions, Radiation Intensity, Directivity and Gain Bandwidth,
Antenna Apertures, Front to back ratio, Friis Transmission formula, Antenna Theorems, Microwave Passive
components: Directional Coupler, Power Divider, Magic Tee, attenuator, resonator, Principles of Microwave,
, Low Noise Amplifier Design, Microwave Mixer Design, Microwave Oscillator Design for Skill Development
through Problem Solving methodologies. This is attained through assessment component mentioned in
course handout.Catalogue
prepared byDr Rakesh

Recommended	15 th BOS held on 28/07/2022
by the Board of	
Studies on	
Date of	Meeting No. 18 th , Dated 03/08/2022
Approval by the	
Academic	
Council	

June REGISTRAR

PRESIDENCY UNIVERSITY

Presidency University Act, 2013 of the Karnataka Act No. 41 of 2013 | Established under Section 2(f) of UGC Act, 1956 Approved by AICTE, New Delhi

A-2 [2022] COURSE HAND OUT

SCHOOL: School of Engineering	DEPT.: ECE DATE OF ISSUE: 28/07/2020
NAME OF THE PROGRAM	: B.Tech.
P.R.C. APPROVAL REF.	: PU/AC-11/8/06_2020
SEMESTER/YEAR	: 5 TH SEM / 3 RD YEAR
COURSE TITLE & CODE	: Antenna and microwave engineering & ECE3112
COURSE CREDIT STRUCTURE	: 4 Credits
CONTACT HOURS	: 4 hours per week
INSTRUCTOR INCHARGE	: Mr. Tirumala Vasu G
COURSE INSTRUCTOR	: Mr. Tirumala Vasu G

PROGRAM OUTCOMES:

Graduates of the B. Tech. Program in Electronics and Communication Engineering will be able to:

Legend: Bold indicates this PO is covered by some COs of this particular course Normal font indicates PO is not covered under this course COs

PO1. Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem Analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet t h e specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern Tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

6. The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable developments

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent

and life-long learning in the broadest context of technological change.

COURSE PREREQUISITES: Basic concepts of Cartesian, cylindrical and spherical coordinate systems. Differential length (dl), surface (ds) and volume (dv). Line, surface and volume integrals. Divergence and curl operations. Fundamentals of static electric and magnetic fields which includes electric field density and intensity, magnetic field density and intensity, magnetic field density and intensity, Maxwell's equations, boundary conditions.

COURSE OBJECTIVE: The objective of the course is to familiarize the learners with the concepts of Antenna and Microwave Engineering and attain SKILL DEVELOPMENT through Problem Solving techniques.

COURSE DESCRIPTION:

This course will introduce the basics of electromagnetic radiation and propagation and also deals with how VHF and UHF antennas are used in microwave communication. This course gives a comprehensive coverage of a wide variety of antennas and propagation techniques related to numerous communication systems. This course provides an opportunity to validate the concepts of mathematical modeling behind the antenna design.

COURSE OUTCOMES:

On successful completion of the course the students shall be able to:

CO1: Summarize the fundamental parameters and Radiation Pattern of Different Types of Antennas.

CO2: Discuss the working and design of VHF, UHF and Microwave Antennas

CO3: Analysis of how the electromagnetic wave is propagates in different atmospheric conditions as a ground, space, sky wave.

MAPPING OF C.O. WITH P.O. [Select only such P.O.s which are highlighted above and mark H/M/L Against each of the C.O. depending on the degree of contribution of the C.O.to the P.O.]

[H-HIGH, M- MODERATE, L-LOW]

PO CO	PO1	PO2	PO5	PO12
CO1	Н	L		
CO2		Н	М	
CO3	М			М

COURSE CONTENT (SYLLABUS):

Module-1 : Fundamentals of Antenna parameters: Introduction, Basic radiation Equation, Radiation Pattern., Beam Area, Beam Efficiency, Radiation Power density, Field Regions, Radiation Intensity, Directivity and Gain Bandwidth, Antenna Apertures, Front to back ratio, Friis Transmission formula, Antenna Theorems. [11 Hrs] [Blooms 'level selected: Knowledge]

Module -2: Basic antenna Design Long wire And V antennas, Rhombic Antenna, Folded Dipole Antenna, Yagi Uda Antenna, Helical Antenna, and Horn Antennas. Micro strip Antennas, Reflector Antennas, Cassegrain Antenna, Feed methods of Parabolic Reflectors, Frequency independent Antennas. [10 Hrs] [Blooms 'level selected: Comprehension]

Module-3 Wave Propagation - Introduction, Ground wave Propagation, Classification of Electromagnetic Waves, Reflection of Radio waves by earth surface. Space wave Propagation- considerations, Tropospheric propagation, Sky wave propagation- structure of ionosphere, Propagation of radio waves through ionosphere. Mechanism of wave bending and critical frequency. MUF, skip distance, Relation between MUF and skip distance.

[12 Hrs] [Blooms 'level selected: Comprehension]

Module-4: Microwave Passive components: Directional Coupler, Power Divider, Magic Tee, attenuator, resonator, Principles of Microwave Semiconductor Devices: Gunn Diodes, IMPATT diodes, Schottky Barrier diodes, PIN diodes, Microwave tubes: Klystron, TWT, Magnetron. Impedance transformation, Impedance Matching, Microwave Filter Design, RF and Microwave Amplifier Design, Microwave Power amplifier Design, Low Noise Amplifier Design, Microwave Mixer Design, Microwave Oscillator Design

[12 Hrs] [Blooms 'level selected: Comprehension] SKILL SETS TO BE DEVLOPED:

- 1. An attitude of enquiry.
- 2. Confidence and ability to tackle new problems.
- 3. Ability to interpret events and results.
- 4. Ability to work as a leader and as a member of a team.
- 5. Assess errors in systems/processes/programs/computations and eliminate them.
- 6. Observe and measure physical phenomena.
- 7. Write reports.
- 8. Select suitable equipment, instrument, materials & software
- 9. Locate faults in system/Processes/software.
- 10. Manipulative skills for setting and handling systems/Process/Issues
- 11. The ability to follow standard /Legal procedures.
- 12. An awareness of the Professional Ethics.
- 13. Need to observe safety/General precautions.

REGISTRAR

14. To judge magnitudes/Results/issues without actual measurement/actual contacts

DELIVERY PROCEDURE (PEDAGOGY): Lectures will be conducted with the aid of multi-media projector, blackboard, etc. Assignments based on course contents will be given to the students at the end of each unit/topic and will be evaluated at regular interval.

SELF-LEARNING TOPICS: Separation of Field Regions (Far field Derivation), Radiated power of Loop Antenna, Smart antennas Like Polarization Reconfigurable antenna.

Experiential Learning Topics:

Assignment 1: Designing/simulate a practical antenna (Reconfigurable antennas are preferable) from own specifications for Folded Dipole Antenna.

Assignment 2: Designing/simulate a practical antenna (Reconfigurable antennas are preferable) from own specifications for Corner Reflectors.

Assignment 3: Designing/simulate a practical antenna (Reconfigurable antennas are preferable) from own specifications Rectangular Micro strip Antennas.

REFERENCE MATERIALS: Textbooks, reference books, any other resources, like webpages.

I. Text Book(s):

- 1. Antennas and wave propagation John D. Kraus and Ronald J. Marhefka and Ahmad S.Khan, TMH, New Delhi, 5th Ed., (special Indian Edition), 2017
 - 2. Antenna Analysis and Design, Constantine A. Balanis, Wiley Publications, 4th Ed, 2016.

II. Reference book(s):

- 1. Antenna Theory and Design, Warren L. Stutzman, Gary A. Thiele, Wiley Publications, 3rd Edition
- 2. Electromagnetic Waves and Radiating Systems E.C. Jordan and K.G. Balmain, PHI, 2nd ed., 2000.

Online Resources (e-books, notes, ppts, video lectures etc.):

- 1. https://youtube.com/playlist?list=PL3UZlxOnyu9CRoBFsG5x-VqYeC69FmMZT
- 2. https://www.sciencedirect.com/topics/engineering/radio-wave
- 3. https://www.sciencedirect.com/topics/physics-and-astronomy/wave-propagation

E-content:

1. Zhe Chen, Xiao-Ting Yuan, Jian Ren, Tao Yuan, An ultra-wideband MIMO antenna for 5G smartphone, AEU - International Journal of Electronics and Communications, Volume 154, 2022, 154301, ISSN 1434-8411, https://doi.org/10.1016/j.aeue.2022.154301.

2. Jian Ren, Zheng-Yu Xiong, Jing-Ya Deng, Jia-Yuan Yin, Yin Zhang, Li-Xin Guo, A compact single-layer filtering patch antenna with wide harmonic suppression and enhanced bandwidth, AEU - International Journal of Electronics and Communications, Volume 145, 2022, 154083, ISSN 1434-8411, https://doi.org/10.1016/j.aeue.2021.154083.

3. Jian Ren, Zheng-Yu Xiong, Jing-Ya Deng, Jia-Yuan Yin, Yin Zhang, Li-Xin Guo, A compact single-layer filtering patch antenna with wide harmonic suppression and enhanced bandwidth, AEU - International Journal of Electronics and Communications, Volume 145, 2022, 154083, ISSN 1434-8411, https://doi.org/10.1016/j.aeue.2021.154083.

4. Xiaokun Yang, Linwei Cui, Zhao Ding, Zhengping Zhang, A 5G filtering antenna simultaneously featuring high selectivity and band notch, AEU - International Journal of Electronics and Communication, Volume 153,2022, 154299, ISSN 1434-8411,

REGISTRAR

5. Presidency University Library Link:- https://presiuniv.knimbus.com/user#/home

GUIDELINES TO STUDENTS:

- The students are advised to be very much regular to the classes and sincerely attempt the learnings listed in the • Pedagogical section.
- The students are advised to take down the notes legibly which serves as a firsthand information to study and • revise lecture topics on day to day basis.
- The students are advised to visit the Microsoft teams on a regular basis to access the supporting materials shared ٠ by the course instructors.
- Control Systems is a problem-based course where mostly practicing the problems is very much important than • reading the theory and hence for studying the concepts, any book can be followed such as mentioned in reference books or else you can download pdf notes from NPTEL.
- The students are advised to use the journals, technical magazines and other relevant materials.
- The students are advised to watch the video lectures available online to understand and review the concepts • delivered in the class as well as problems assigned for self-learning topics.
- Students are required to strictly adhere to assignment deadlines. •
- Students are required to actively participate in classroom discussions and other activities which is planned in the ٠ classroom.
- Students are required to have minimum of 75% of attendance to be eligible to attend exam •

Sl. No.	ACTIVITY	STARTING DATE	CONCLUDING DATE	TOTAL NUMBER OF PERIODS
1.	Overview of the course			
2.	Module: 01			1
3.	Module:02			7
4.	Test-1			
5.	Module:02			3
6.	Assignment/quiz			
7.	Module:03			8
8.	Test – 2			
9.	Module: 03			MULL 04
			REGIST	RAR

COURSE SCHEDULE:

10.	Module: 04		12
11.	Assignment/quiz		
		TOTAL	45

SCHEDULE OF INSTRUCTION

Sl.	Session	Lesson	Topics	Course	Delivery	Refere
No	No[Date If	Title		Outcome	Mode	nce
	Possible]			Number		
1.	L1		Program Integration		Offline	
2.	L2		Course Integration		Offline	
3.	L3	Fundamenta ls of Antenna	Introduction, Basic radiation Equation	CO1	Offline	T2, R1
4.	L4	parameters	Radiation Pattern	CO1	Offline	T2, R1
5.	L5		Beam Area, Beam Efficiency	CO1	Offline	T2, R1
6.	L6		Field Regions		Offline	T2, R1
7.	L7	-	Radiation Intensity	CO1	Offline	T2, R1
8.	L8		Directivity and	CO1	Offline	T2, R1
9.	L9	-	Gain Bandwidth	CO1	Offline	T2, R1
10.	L10		Antenna Apertures	CO1	Offline	T2, R1
11.	L11	-	Front to back ratio	CO1	Offline	T2, R1
12.	L12	-	Friis Transmission formula	CO1	Offline	T2, R1
13.	L13		Antenna Theorems	CO1	Offline	T2, R1
14.	L14	Basic	Basic antenna	CO1	Offline	T2, R1
15.	L15	Design	Design Long wire		Offline	T2, R1
16.	L16		V antennas, Rhombic Antenna	CO2	Offline	T2, R2
17.	L17		Folded Dipole Antenna	CO2	Offline	T2, R2
18.	L18	-	Yagi Uda Antenna	CO2	Offline	T2, R2
19.	L19		Helical Antenna, and Horn Antennas	CO2	Offline	T2, R2
20.	L20		Micro strip Antennas, Reflector Antennas	CO2	Offline	
21.	L21		Cassegrain Antenna	CO2	Sfflinde SECY	T2, R2

22.	L22		Feed methods of Parabolic Reflectors	CO2	Offline	T2, R2
23.	L23	-	Frequency independent Antennas	CO2	Offline	T2, R2
24.	L24	Wave Propagation	Introduction, Ground wave Propagation	CO2	Offline	T2, R2
25.	L25		Classification of Electromagnetic Waves	CO2	Offline	T2, R2
26.	L26		Reflection of Radio waves by earth surface	CO2	Offline	T2, R2
27.	L27		Space wave Propagation- considerations,	CO2	Offline	T2, R2
28.	L28	-	Tropospheric propagation		Offline	T2, R2
29.	L29		. Sky wave propagation- structure of ionosphere	CO3	Offline	T2,R2
30.	L30		Propagation of radio waves through ionosphere	CO3	Offline	T2,R2
31.	L31		Mechanism of wave bending	CO3	Offline	T2,R2
32.	L32		critical frequency	CO3	Offline	T2,R2
33.	L33	-	MUF	CO3	Offline	T2,R1
34.	L34		skip distance	CO3	Offline	T2,R1
35.	L35		Relation between MUF and skip distance.	CO3	Offline	T2,R1
36.	L36	Microwave Passive components	Directional Coupler, Power Divider, Magic Tee	CO3	Offline	T2,R1
37.	L37	•••mponents	attenuator, resonator	CO3	Offline	T2,R1
38.	L38		Principles of Microwave Semiconductor Devices: Gunn Diodes	CO3	Offline	T2,R1
39.	L39		IMPATT diodes, Schottky Barrier diodes	CO3	Offline	T2,R1
40.	L40		PIN diodes, Microwave tubes: Klystron, TWT, Magnetron	CO3	Offline	T2,R1
41.	L41		Impedancetransformation,Impedance Matching	CO3	Offline	T2,R1
42.	L42		Microwave Filter Design, RF and Microwave Amplifier Design	CO2	Offline	T1,R1
				c	REGISTRAR	Igistrar)

43.	L43	Microwave	Power	amplifier	CO2	Offline	T1,R1
		Design, Low	Noise Amp	olifier			
44.	L44	Design, Micro	owave Mix	er Design	CO2	Offline	T1,R1
45.	L45	Microwave O	scillator D	esign	CO2	Offline	T2,R1

Topics relevant to "SKILL DEVELOPMENT":, Basic radiation Equation, Radiation Pattern., Beam Area, Beam Efficiency, Radiation Power density, Field Regions, Radiation Intensity, Directivity and Gain Bandwidth, Antenna Apertures, Front to back ratio, Friis Transmission formula, Antenna Theorems, Microwave Passive components: Directional Coupler, Power Divider, Magic Tee, attenuator, resonator, Principles of Microwave, Low Noise Amplifier Design, Microwave Mixer Design, Microwave Oscillator Design for Skill Development through Problem Solving methodologies. This is attained through the Assignment as mentioned in the assessment component.

ASSESSMENT SCHEDULE:

SI.N	Assessment	contents	CO.	Duration	Mark	Weighta	Venue,	DATE
0	type		No	In Hours	S	ge	&TIME	
1.	Mid term	Module 1, Module 2	CO1, CO2		50	25%		
2.	End Term Examinatio n	Module 1,2,3,4	CO2, CO3		100	50%		
3.	Assignment /Quiz	Module 1,2,3,4	CO1, CO2, CO3, CO4		40	20%		
4.	Assignment E content	https://doi. org/10.101 6/j.aeue.20 21.154083 https://doi. org/10.101 6/j.aeue.20 21.154083	CO1, CO2, CO3, CO4		10	5%	-	

COURSE CLEARANCE CRITERIA: A minimum of 75% attendance is required to attend the end term exam. Make-up policy will be only as per academic regulation. There will be no make-up for ASSIGNMENT and QUIZ

CONTACT TIMINGS IN THE CHAMBER FOR ANY DISCUSSIONS: It will be announced in the class. Interested students may meet the Instructor In-charge during the Chamber Consultation Hour to clear doubts.

MAKEUP POLICY:

If the student misses an evaluation component, he/she may be granted a make-up. In case of an absence that is foreseen, make-up request should be personally made to the Instructor-in-Charge, well ahead of the scheduled evaluation component. Reasons for unanticipated absence that qualify a student to apply for make-up include medical emergencies or personal exigencies. In such an event, the student should contact the Instructor-in-Charge as soon as practically possible.

	OUESTION	MARKS	COURSE	BLOOM'S
	QUESTION		OUTCOME	I EVEI
SL			NO	
NO			NO.	
1	A hypothesical isotropic antenno with			
1	A hypothetical isotropic antenna with maximum diagonal dimension of 11 m			
	radiating at 3 MHz What will be the minimum	10	CO1	Knowledge
	distance from where we can calculate all types			
	of antenna parameters.			
	1			
2	A thin linear dipole of lengthlis placed			
	symmetrically about the z-axis. Find the			
	far-zone spherical electric and magnetic			
	components radiated by the dipole whose			
	current distribution can be approximated			
	by			
		10	CO2	Comprehension
	(a) $I_z(z') = \{I_0(1 + \frac{z}{l}z'), -l/2 \le$	10	002	comprehension
	$z' \leq 0 I_0 \left(1 - \frac{2}{2}z'\right), 0 \leq z' \leq l/2$			
2				
3	A troposcatter link is established between			
	two antennas that are separated by a ground			
	distance of 300 km. The two antennas are			
	located at a height of 6 m from the surface			
	of the earth and are launching			
	electromagnetic waves horizontally into			
	space. Calculate the height of the scatter	10	CO3	Comprehension
	volume situated mid-way between the two			1
	antennas which can be used to establish the			
	troposcatter link.			
3	Find expressions for the electric surface			SENCY UNIC
	current density on the walls of a rectangular		-R	EGISTRAR (Registrar)
<u> </u>	1		1	*

SAMPLE THOUGHT PROVOKING QUESTIONS:

Page 12 of 15

Target set for course Outcome attainment:

Sl.no	C.O.	Course Outcomes	Target set	for
	No.		attainment	in
			percentage	
1	CO1	Describe the fundamental parameters and Radiation Pattern of	50%	
		Different Types of Antennas.		
2	CO2	Explain the working and design of VHF, UHF and Microwave	35%	
		Antennas		
3	CO3	Outline how the electromagnetic wave is propagates in	40%	
		different atmospheric conditions as a ground, space, sky wave.		
4	CO4	Familiarize basics and fundamentals of Microwave	30%	
		engineering and understand the waveguide concepts.		

This course has been duly verified Approved by the D.A.C.

Signature of the Chairperson D.A.C

Course Completion Remarks & Self-Assessment. [This has to be filled after the completion of the course]

[Please mention about the course coverage details w.r.t. the schedule prepared and implemented. Any specific suggestions to incorporate in the course content. Any Innovative practices followed and its experience. Any specific suggestions from the students about the content, Delivery, Evaluation etc.]

Sl.no.	Activity	Scheduled	Completion	Actual	Completion	Remarks
		Date		Date		
	As listed in the course					
	Schedule					
					0	
					and	SENCY UNITED
					REUISTRAK	Registrar

Any specific suggestion/Observations on content/coverage/pedagogical methods used etc.:

Course Outcome Attainment:

Sl.no	C.O.	Course Outcomes	Target	set	for	Actual	C.O.	Remarks	on
	No.		attainme	ent	in	Attainm	ent	attainment	
			percenta	age		In Percentage		&Measures	to
								enhance	the
								attainment	
0.1	<u> </u>								
01	Col								
02	Co2								
03	Co2								
04	Co3								
0.5									
05									
06									

Name and signature of the Faculty member:

D.A.C. observation and approval:

BLOOM'S TAXONOMY

Learning Outcomes Verbs at Each Bloom Taxonomy Level to be used for writing the course Outcomes.

Cognitive Level	Illustrative Verbs	Definitions
Knowledge	arrange, define, describe, duplicate, identify, label, list, match, memorize, name, order, outline, recognize, relate, recall, repeat, reproduce, select, state	remembering previously learned information
Comprehension	classify, convert, defend, discuss, distinguish, estimate, explain, express, extend, generalize, give example(s), identify, indicate, infer, locate, paraphrase,	grasping the meaning of information

	predict, recognize, rewrite, report, restate, review, select, summarize, translate	
Application	apply, change, choose, compute, demonstrate, discover, dramatize, employ, illustrate, interpret, manipulate, modify, operate, practice, predict, prepare, produce, relate schedule, show, sketch, solve, use write	applying knowledge to actual situations
Analysis	analyze, appraise, breakdown, calculate, categorize, classify, compare, contrast, criticize, derive, diagram, differentiate, discriminate, distinguish, examine, experiment, identify, illustrate, infer, interpret, model, outline, point out, question, relate, select, separate, subdivide, test	breaking down objects or ideas into simpler parts and seeing how the parts relate and are organized
Synthesis	arrange, assemble, categorize, collect, combine, comply, compose, construct, create, design, develop, devise, explain, formulate, generate, plan, prepare, propose, rearrange, reconstruct, relate, reorganize, revise, rewrite, set up, summarize, synthesize, tell, write	rearranging component ideas into a new whole
Evaluation	appraise, argue, assess, attach, choose, compare, conclude, contrast, defend, describe, discriminate, estimate, evaluate, explain, judge, justify, interpret, relate, predict, rate, select, summarize, support, value	making judgments based on internal evidence or external criteria

anne REGISTRAR Registra

SCHOOL of ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Year: 2022-2023 (ODD)	Semester: B.Tech.,(ECE)	Section: 6ECE2		
Course Title	: ANTENNA AND MICROWAVE ENGINEERING			
Course Code	: ECE3112			
Type of Skill	: Skill Development			
Type of Activity	: Problem Solving			
Instructor in Charge	: Dr. PRABHU T			
Instructor for Section	: Dr. PRABHU T			
Details about the activity	: Students were asked to submit assignment			

Assignment1

- 1. A broadcasting system operating at 200MHz, employing a halfwave dipole antenna having a gain of 2.15 dB. The power supplied to the transmitting antenna is 1 kW. The minimum power to be delivered to the receiving antenna is 1nW. If the distance between two antennas is 100 km. Find the minimum gain of receiving antenna.
- 2. An antenna has a field pattern given by $E(\Theta) = Cos^2 \theta$ for $0 \le \theta \le \pi/2$, Find the HPBW and Beam area.
- 3. The power radiated by a lossless antenna is 20 watts. The directional characteristics of the antenna are represented by the radiation intensity of $U = U_0 Cos^4 \theta$, $(0 \le \theta \le \pi/2, 0 \le \phi \le 2\pi)$. Find the below far-field parameters
 - (a) Maximum power density at a distance of 100 m.
 - (b) Maximum directivity

(c) Maximum Gain and efficiency.

- 4. An antenna whose directivity in a particular direction is 30 dB that is excited with a 50 V power source and produces a radiation intensity of 100 Watts/steradian in the direction of maximum radiation. Find the input resistance of the antenna.
- 5. Consider an antenna whose HPBWs in two orthogonal planes are 28° and 35°. If the antenna is operating at 450 MHz, determine its effective aperture.
- 6. The Friis Transmission Equation is used to calculate the power received from one antenna when transmitted from another antenna separated by some distance. Suppose you have been asked to design an antenna operating at 1 GHz with a gain of 25 dB. What power should be supplied to the transmitting antenna such that and the minimum power that is delivered to the receiving antenna is 10.8 mW. The transmitting and the receiving antenna are 1 km apart. The gain of the receiving antenna is 20 dB.
- 7. Draw the structure of a helical antenna and calculate the axial length of a helical antenna where the diameter of the helix is 3 cm, pitch angle is 45° and the number of turns is 5.
- 8. Design a three element Yagi-Uda antenna to operate at a frequency of 180 MHz.

(i) Mention all the necessary equations for the dimensions of the various elements and the inter-element spacing.

(ii) Evaluate the dimension of all the elements

- 9. The beam solid angle of an antenna extends between $\pi/6 \le \theta \le \pi$ and $\pi/4 \le \phi \le \pi/3$. Find the equivalent beam solid angle and maximum directivity in dB.
- 10. Find the number of steradian and square degrees on a spherical surface that is between $\theta=20^{0}$ and $\theta=40^{0}$ & between $\phi=30^{0}$ and $\phi=70^{0}$.

Mohanavinash. CH Assignment-01 20201ECE0077 GIVER, 1. f = 200 MHZ $G_{2t} = 2.15 \text{ dB}$ R = 100 km50V) Pt=1 KW Pr=10W $P_{\sigma} = P_{\pm} \cdot G_{\pm} \cdot G_{\sigma} \left(\frac{C}{4\pi R_{\pi}^{2}} \right)^{2}$ (1) (08 (12) = 10 (08 (12) $\log(b_{2}) = \frac{24.15}{100}$ 1× 20-9 $\frac{1 \times 20^{-4}}{1 \times 20^{3} \times 164} = 6 \times \left(\frac{3 \times 20^{8}}{4 \pi \times 100 \times 200 \times 10^{6}} \right)^{2} \qquad 6 \times t = 10^{\frac{2.15}{20}}$ (rz= 1.64) (2x = 6.097×10-23 1.424 × 20 12 (28 (2B) = 10 log (628) (28= 9.4281 = 10 log (0.4281) (28 (2B) = -3.684 dB 2 An antenna has a field pattern given by E(0)= cos20 for $0 \le 0 \le \pi/2$. Find the HPBW and Beam area? SOV) biven, $E(\theta) = \cos^2 \theta \quad \left[0 \le \theta \le \frac{\pi}{2} \right]$ E(0)= 0.707 WKT, 60520= 1+60520 CO920 = 0.707 1+ 00920 = 0.707 WKT, :. HPW = 20 COS20 = 0.414 =2×32,77 20 = 605 (0.414) HPBW = 65.543 : 0 = 32.77° Beam area 211 JA= / JE(0). Sino. 20. 20

REGISTRAR

0=0 0=0

Mohanavinashion 20201 ECE 0077 let, &= COSO. $\int \int (\cos^2 \theta)^2 \cdot \sin \theta \, d\theta \, d\phi$ Ø=0 0=0 de=-sino. do 1111111 $= \int_{0}^{2\pi} d\theta \int_{0}^{1/2} \cos^4\theta \cdot \sin\theta \cdot d\theta$ $\theta = 0 \qquad \theta = 0 \qquad ge \qquad -de.$ if 0=0 20=1 Fider 1 0= m 2=0 $\int d\beta = \int \mathcal{R}^4 d\mathcal{R}$. 101.2 - 10- - 1 Ø=0 $2\Pi \cdot \left[-\frac{x^5}{5} \right]_{1}^{0}$ A DALL & DEST A (MUL ON O C (1 1 7) 02 T (<u>41</u>) 1.691.20 _Ω_A = 2π 58 The power radiated by a loseless ortenna is 20 watt. The 3. directional characteristics of the antenna are represented by the sadiation intensity of u= Uocos40. (0≤0≤ #, 0≤ p≤217) Find the below fax - field pasameters. a) Max power density at a distance of 100m. b) Max directivity. 108-0 0 00 c) Max brain & efficiency. 1680 2020012 $P_{\text{sad}} = \int \int \int u \cdot sin \theta \cdot d\theta \cdot d\phi$ SON) Ø=0 0=0 211 T/2 (iture) or av 4000548. @ sine. 20. 1et, Ø=0 &= 605 0 8=0 d2 = - sino. do $2\pi \int -u_0 \mathscr{B}^{\mathsf{H}} d\mathscr{B}$ 2 8=1 0 000 40 2TT [-25] 0=0 REGISTRAR

anavinash. CH 0202 ECE0077 => > ≥ 211 × U0 × 1 Prad = 217 00 viver. 5 $P_8 = 20 \omega$ 20×5 = U0 2Π in uo = umax 10 = 15.915 watt · Roberton THE YER ?) 1.1.1.1 Umare = 82. Wmare 8. 11/10: 12 - 0 - 1 Wmax = 15.915 5=100 (100)2 a look grant of $M_{max} = 1.5915 \times 10^{-3} \text{ watt} m^2$ **îî**) Dmar = 4TT Umax Dmax (2B) = 10 (0g (9-999) Prod. 10. - 41TX 15.915 Dmax = 10 38 66) 111 OPP 90 1 18 . 33 Dmax = 9.999 - 10 I The store of the gradience of the solution of n) efficiency bain = 7,0 7=1. = 1 × 9.999 28. antenna Cain = 9.9993B 4. An antenna whose disectivity in a pasticular disection is 30dB that is excited with a sov power source and produces a radiation intensity of 100 mates / steradian in the direction of maximum sadiation. Find the i/p sesistance of the antenna? Sov) Vin = SOV D = (dB) = 30 dBJune

Umar = 100 watts 38

REGISTRAR

$$D(d\theta) = 1 \circ \log (\text{Dmax})$$

$$\frac{3\sigma}{4\sigma} = \log (\text{Dmax})$$

$$\frac{3\sigma}{4\sigma} = \log (\text{Dmax})$$

$$D_{\text{max}} = 10^{3} \Rightarrow D_{\text{max}} = 1000$$

$$D_{\text{max}} = \frac{1}{10} \frac{1}{10} \Rightarrow \frac{1}{1000} \frac{1}{1000} = \frac{1}{1000} \frac{1}{$$

5.

Sov

ſ. r

20201F(E0077 *) 1 Length of Reflectors = 500 feet. f(MIHZ) *) length of director = 455 f(MHZ) feet. **î**î) *) driven element= 455 *) Reflector = 500 feet 180 180 = 2.637 feet = 2.777 feet *) director = 455 180 - 2.527 feet 9. The beam solid angle of an antenna extends blue $\frac{\pi}{6} \leq \theta \leq \pi$ and $\frac{\pi}{2} \leq \emptyset \leq \frac{\pi}{3}$. Find the equivalent beam solid angle and marimum directivity in dB. SOV) $-\Omega A = \int d\phi \int \sin \theta \, d\theta$ 또 문 = [ø]^{π/3} [-cosθ]^π Γ/6 NKT $= \left[\frac{\pi}{3} - \frac{\pi}{4} \right] \left[-\cos(\pi) + \cos(\pi_{6}) \right] \qquad \text{Pmax} = \frac{4\pi}{24}$ $-2A = \frac{\pi}{12} \times 1.866$ <u> – μ</u>Π 2000000000 -A=0.4885 0.4885 $\Omega_A = 0.4885 \times \left(\frac{180}{T}\right)^2$ Dmax = 25.724 DA = 1603.81 58 D(38) = 10 (08 (Dmax) = 10 (00 (m2 = + 1)) D = 14.10

Mohanavinash.CH

DV,

SON

6. The Fris Transmission eq is used to calculate the power received from one antenna when transmitted to another antenna separated by some distance. Suppose you have been asked to design an antenna operating at 16.172 with a gain of 25 dB.

what power should be supplied to the transmitting ontenna such that is minimum power delivered to the recieving antenna is 10.8 mW the transmitting & receiving antenna are 1km part. The gain of the receiving antenna is 20 dB.

> $P_{\pm} = ?$ f= 1 (2HZ ($\chi_{\pm} = 25 dB$ Ps = 10.8 m/d d = 1 km ($\chi_{\pm} = 20 dB$

> > REGISTRAR

 $P_{\delta} = P_{\pm} \cdot \omega_{\pm} \cdot \omega_{\delta} \left(\frac{C}{4\pi R_{f}} \right)^{2}$

$$\Rightarrow 10.8 \times 10^{-3} = P_{\pm} \times 316.227 \times 100 \qquad 62_{\pm} = 25dB \\ \times \left(\frac{3 \times 10^{8}}{(4 \pi \times 1000 \times 1 \times 10^{6})^{2}}\right)^{2} 25 = 10 \log (6_{\pm}) \\ \Rightarrow 10.8 \times 10^{-3} = P_{\pm} \times 1.8022 \times 10^{-5} \qquad 6_{\pm} = 316.227 \\ P_{\pm} = 599.267 \text{ W} \qquad 6_{15} (4B) = 20 \text{ dB} \\ 2p = 1p \log(6_{15}) \\ 6_{15} = 100 \end{aligned}$$

REGISTRAR