

Department of Electrical and Electronics Engineering

Action taken Report on Curriculum Feedback from students

Sl. No	Feedback	Action Taken
1	Students suggested to add real time courses which is based on industries requirement or future requirement.	Majority of the course contents are prepared keeping in view of industrial requirements (Minor).
2	 I) Students suggested to include Laboratories for Electrical department related to Transmission system as when we had the subject, we had multiple sources of information and at times every other was different from the previous one. Ii) Students suggested that students should be taken for Industrial visits more often than once a semester as it increases the area of interest towards a particular field. Iii) Transmission-related subject structure should be refined as it was difficult to understand during the course, being very vast. Iv) University should encourage students towards practical based learning as it develops the learning process from two sides (theoretical & practical based). 	The department has already planned to purchase Transmission line simulator., PLC simulators and the programs like Value added Courses, Hands on training, Industrial Visits, MoU with PRDC will be initiated.
3	Students suggested that students should be taken for Industrial visits more often than once a semester as it increases the area of interest towards a particular field.	Department will be organizing industrial visit to all semester students
4	Students suggested to add some mini projects in the curriculum	Students are encouraged to do Course based projects

Action taken Report on Curriculum Feedback from Faculty

Sl. No	Feedback	Action Taken
1	Hands on training should be made available to faculty members for getting themselves updated and to impart the knowledge to students. More of industry collaboration is required.	This will be addressed by conducting Faculty Development Programs, Industrial Visits, encouraging the Faculty members to attend training programs conducted by industries and premier institutes and Hands on Training sessions too.
2	Some research labs can also be incorporated in the curriculum in consultation with industry experts and researchers	The department is already having MoU with PRDC and research groups are formed in the department to accelerate this activity.
3	Lab infrastructure should be upgraded and proper facilities should be provided for research	The department is already having MoU with PRDC and research groups are formed in the department to accelerate this activity
4	More choices may be given in choosing DE and Open elective courses. At least a few higher semester Laboratories curriculum may be enriched at par with industries.	6 DE and OE courses are included in the present curriculum
5	Few courses in discipline electives may be integrated with ML, Python etc	Programming component is already incorporated in the courses wherever it is applicable

Action taken Report on Curriculum Feedback from Employer

Sl. No	Feedback	Action Taken
1	Curriculum is very well laid out. Consider adding "Z transform, Laplace transform and Fourier Transform" math courses to the School Core. This will be helpful for Electronics and communication applications. Also consider adding "Introduction to ETAP (Electrical Transient Analyzer Program)"to discipline electives and "Technical and Business Writing" to open Electives.	Equivalent to the proposed course, The university already implemented the lab course which involves another leading commercial software "Mipower"
8		asure

Private University Estd. in Karnataka State by Act No. 41 of 2013

2	 Apart from giving flexibility to students in selecting the electives, there shall be proper guidance given to the students on the importance of each subject specified in the electives list. Also the subjects has to be selected based on the application in industry side and not only on the availability of faculty and for pass percentage of the department. There shall be labs related to the software's that are used in the industry level with proper guidance. 	The awareness regarding the selection of elective courses will be given by faculty advisors, mentors, faculty members with subject expertise and HoD
3	One course namely EEE3007 Non- Conventional Energy Sources and Applications may be renamed to "Renewable & Distributed energy sources. One course on energy audit is offered twice. This may be looked into. More Practical's/assignments and increased credits could be offered for courses like Optimization & Power system operation & control.	The suggestion is considered for implementation as this leads to more specific insight in to the subject.
4	 at topic on selection of electrical equipment's and general failure for major electrical equipment's like CT, PT, motors (DC&AC) & transformers, power capacitors. Digital power system protection if we cover topic on advanced relaying because now a days, we are using numerical relays these relays are having all type required protection for equipment's just we have to select the suitable relay. Power system operation and control in this subject if we cover topic maintenance and general break down is well good for industrial. Power system analysis general we will by using by mathematical derivations if we do by using software and comparing both because jobs required software knowledge. 5)Switchgear and protection advance relay types and general protection required electrical equipment's 	The suggested points will be incorporated in the curriculum.
3/8	The bridge between academics and industry need to be shortened.	Department of EEE is already doing MOUs with different industries to impart the technical understanding to students.
6	Hands on training to the students need to be imparted to enhance the practical skills.	The students are already participating in different workshops and webinars to enhance their technical skill.

Private University Estd. in Karnataka State by Act No. 41 of 2013

7	The current power sector needs more professionals with knowledge in core electrical and programming languages like GAMS & Python. The curriculum lacks some significant areas like Electricity Markets, Smart Grid Technologies, Energy Regulation, etc. These subjects will create more opportunities for the graduates.	The curriculum is already in line with the suggestions made.
8	More industry internships should be arranged	
9	The curriculum design is very good, offering good flexibility and diverse options to students for professional and overall development. An important aspect for learning is how we get the students to seek knowledge and have them practice/experiment with what is being learned. Therefore, the design of lab courses are important to suit the program outcome, and important to provide flexibility in lab courses to suit the learning pace/skill of the students and industry needs. I take it that this aspect is also addressed in the best possible manner.	The curriculum is already in line with the suggestions made.

Action taken Report on Curriculum Feedback from Alumni of AY 2020-2021

Sl. No	Feedback	Action Taken					
1	Some ongoing technology might be really useful to include in courses	All the course contents are prepared keeping in view of ongoing technologies.					
2	Placement to be improvised for core	Student internships may be improved and there by students may be absorbed into the core industries.					
3	The students should be introduced to the industry standard requirement courses.	11 Value added Courses, Hands on					
4	Please include all modern concepts what's happening today. This may bridge a way between what we studied and what we will do as an engineer b	Technical Talks , webinars and MOOCs certifications will be initiated (Minor)					
5	More real time application subjects need to be ranght with some hands-on experience	More industry-oriented courses are included in the curriculum including lab ratories					

FS ENCY P ER L

Private University Estd. in Karnataka State by Act No. 41 of 2013

1

6	It would be really helpful if the content is industry or future relevant.	
7	Motivate students for practical knowledge and skills Instead of demotivating for grades and CGPA	More practical courses are included in the
8	Focus and give lot of practices on practical 50% in all fields of engineering.	curriculum embedded with theory courses

Annexure EEE.1

List of new courses:

SI No	Course code	Course Name	L	Т	Р	С	Remarks
1	EEE2002	Electric Circuit Analysis	2	0	2	3	
2	EEE1001	Fundamentals of Electrical and Electronics Engineering	3	0	2	4	
3	EEE2001	Signals and Signal Processing Systems	2	0	2	3	
4	EEE2004	Opamps and Linear Integrated Circuits	2	0	2	3	
5	EEE2005	Microprocessor and Microcontrollers	2	0	2	3	
6	EEE2006	Electrical Machines	3	0	2	4	
7	EEE2008	Electrical Power Generation Transmission and Distribution	3	0	0	3	
8	EEE2011	Computer Aided Design for Electrical Machines	2	0	2	3	
9	EEE2013	Analog and Digital Electronics	2	0	2	3	12 th BoS
10	EEE2014	Electrical Workshop Practice Lab	0	0	2	1	
11	EEE3005	Digital control and state variable methods	3	0	0	3	
12	EEE3007	Modern power electronics and AC drives	3	0	0	3	
13	EEE3008	Materials in Electrical Systems	3	0	0	3	
14 💡	EEE3037Y	UNIX Mechatronics	3	0	0	3	
15	EEE3009	I applications for Electrical Engineering	3	0	2	4	419
16	EEE3910	Electrical Estimation and Costing	3	0	0	3 REGISTR	Registrar
17	EEE3012	Reactive power compensation and Management	3	0	0	З	MANGALOR *

Private University Estd. in Karnataka State by Act No. 41 of 2013

18	EEE3020	Microgrid Technologies	3	0	0	3	
19	EEE3028	Power System Planning	3	0	0	3	
20	EEE3029	HVDC transmission	3	0	0	3	
21	EEE3030	Energy Storage Systems	3	0	0	3	
22	EEE3024	Solar photovoltaic & Wind Energy Systems	3	0	0	3	
23	EEE3032	Big Data Analytics in Power Systems.	3	0	0	3	
24	EEE3027	Fundamentals of Electric Vehicle /Electric Vehicle Technology	3	0	0	3	
25	EEE3042	Automotive Embedded systems	2	0	2	3	
26	EEE3043	AI Techniques for EVs and HEVs	3	0	0	3	
27	EEE3044	Automation of Electrical systems	3	0	0	3	
28	EEE3047	Automotive Electrical and Electronic systems for	3	0	0	3	
29	EEE3048	Power Electronics Applications for Electrical Vehicles	3	0	0	3	
30	EEE3036	Battery Management Systems	3	0	0	3	
31	EEE1002	IoT based Smart Building Technology	3	0	0	3	
32	EEE1003	Basic Circuit Analysis	2	0	2	3	
33	EEE1004	Fundamentals of Industrial Automation	3	0	0	3	
34	EEE1007	Fundamentals of Sci Lab Programming	2	0	2	3	
35	EEE2064	Electrical CAD Laboratory	0	0	2	1	
36	EEE1006	Smart Sensors for Engineering Applications	3	0	0	3	
37	EEE1005	Electric Vehicles & Battery Technology	3	0	0	3	14 th BoS

Annexure EEE.2

List of courses revised:

SI v No	Course Name	L	Т	Р	C	Remark s
1	EFE 2007 Electromagnetic Theory/ Electric EEE 2003 Magnetic Fields	3	0	0	300	12ª Bos
	TOALS				KEGISTR	AR Registrar

Private University Estd. in Karnataka State by Act No. 41 of 2013

2	EEE 209/ EEE2012	Electrical and Electronic Measurements and Instrumentation	2	0	2	3	
3	EEE 205/ EEE2007	Control Systems/Control System Engineering	3	0	0	3	
4	EEE 214/ EEE 2019	Power Electronics	3	0	2	4	
5	EEE 259/ EEE2063	Control System Lab / Control Systems Engineering Lab	0	0	2	1	
6	EEE 261 /	Power Electronics Lab	0	0	2	1	
7	EEE 215/ EEE3002	Power System Analysis	3	0	0	3	
8	EEE 218 /	Power System Protection/Switchgear Protection	3	0	0	3	
9	EEE 262/ EEE3061	Power System Simulation Lab	0	0	2	1	
10	EEE 304 /	Introduction to Electrical Drives /Electric Drives	3	0	0	3	
11	EEE 306 / EEE3021	FACTs Controllers in Power Transmission & Distribution/Flexible A. C Transmission Systems (FACTS)	3	0	0	3	
12	EEE 307/ EEE3022	Power Quality in Electrical Systems/ Electrical Power Quality	3	0	0	3	
13	EEE 310	Electric Power Generation	3	0	0	3	
14	EEE 311/ EEE3031	Utilization of Electrical Energy/Electrical Power Utilisation	3	0	0	3	
15	EEE 312 /EEE302	Power system operation and control	3	0	0	3	
16	EEE 313/ EEE3006	High voltage engineering	3	0	0	3	
17	EEE 223/ EEE3034	Smart Grid Technology/Smart Grid Technologies	3	0	0	3	
18	EEE 319	Electric Vehicles	3	0	0	3	
19	EEE 320	Finite Element Analysis for Electrical Machines	3	0	0	3	
20	EEE 321	Switched Mode Power Conversion	3	0	0	3	
21	EEE 322	PLC's for automation	3	0	0	3	
22	EEE 323/EEE	Introduction to Micro Electro Mechanical Systems / Micro Electro	3	0	0	3	
23	EEF 324/EFE ^Y	Special Electrical Machines and their plications/Special Electrical Machines	3	0	0	3	
24	EEE 326/ EEE 3018/	Computer Applications in power systems	3	0	0	3	ULL CVU
25	EEE3026A	Energy Audit and Demand Side Management	3	0	0	REGISTR	AR

PRESIDENCY UNIVERSITY Private University Estd. In Karnataka State by Act No. 41 of 2013

26	EEE 333/	Automotive Safety / Automotive Safety System	3	0	0	3	
27	EEE327 /EEE301	Renewable Energy sources/Renewable and Distributed Energy Sources	3	0	0	3	
28	EEE2001	Signals and Signal Processing Systems	3	0	0	3	13 th BoS
29	EEE 325 /EEE304	Sensors, Transducers and their applications / Sensors and Transducers	3	0	0	3	
30	EEE2005	Microprocessor and Microcontrollers	3	0	2	4	
31	EEE2008	Electrical Power Generation Transmission and Distribution	3	0	0	3	
32	EEE3005	Digital control and state variable methods	3	0	0	3	
33	EEE3007	Modern power electronics and AC drives	3	0	0	3	
34	EEE3008	Materials in Electrical Systems	3	0	0	3	14 th BoS
35	EEE3009	AI applications for Electrical Engineering	3	0	2	4	
36	EEE3010	Electrical Estimation and Costing	3	0	0	3	
37	EEE3012	Reactive power compensation and Management	3	0	0	3	
38	EEE3029	HVDC transmission	3	0	0	3	
39	EEE3032	Big Data Analytics in Power Systems.	3	0	0	3	
40	EEE3027	Fundamentals of Electric Vehicle /Electric Vehicle Technology	3	0	0	3	
41	EEE1006	Smart Sensors for Engineering Applications	3	0	0	3	

