| Course Code: | Course Title: Fle | ectrical Machine Design | L- T- | | | | | |-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------|--------------|--|--|--| | EEE302 | | Discipline Elective and Tl | | 0 3 | | | | | Version No. | 2.0 | Discipline Diective and 11 | neory only | | | | | | | | ne I and Electrical mach | nines II courses, Knowledge or | n working. | | | | | Course Pre- | | | plications of machines. Basics of | O. | | | | | requisites | and CAD Software | | | | | | | | Anti-requisites | Nil | | | | | | | | | This course provide | des basic knowledge of the | e preliminary design of rotating I | OC and AC | | | | | | electrical machine | es by applying fundamenta | al knowledge of physical and ma | athematical | | | | | Course | | | sidering economic aspects. This i | | | | | | Description | | | esign of induction motors and the | · · | | | | | | * | | velops critical thinking and analy | | | | | | | | 1 0 | drawing skills through modern too | | | | | | Course | · · | | the learners with the concepts of | | | | | | <b>Objective</b> | methodologies. | and attain Entreprene | <mark>eurial Skills</mark> through <mark>Problem</mark> | n Solving | | | | | | memodologies. | | | | | | | | | | - | students shall be able to: | | | | | | | | • | ns, and properties of materials u | ised in the | | | | | Course Out | electrical mach | | 20 | | | | | | Comes | | put equations of transforme | | | | | | | | <ul><li>3. Compute the necessary parameters for designing of various parts of Transformers.</li><li>4. Compute the necessary parameters for designing of 3 phase induction motors.</li></ul> | | | | | | | | | _ | · - | signing of synchronous machine. | 118. | | | | | Course | 3. Compute the n | ecessary parameters for de | signing of synchronous machine. | | | | | | Content: | | | | | | | | | | Basic | | | | | | | | Module 1 | Considerations | Assisamment | Data Collection | 8 | | | | | Module 1 | of Electrical | Assignment | Data Confection | Sessions | | | | | | Machine Design | | | | | | | | _ | _ | _ | als, Insulating Materials, Classi | | | | | | Insulating materi | | al Consideration. Factors f | for consideration in electrical mac | hine design | | | | | Module 2 | Design of DC | Assignment | CAD Modelling | 9 | | | | | Tanias Outmut | Machines Chaine a | | of Number of Poles Main Dire | Sessions | | | | | | | | te of Number of Poles, Main Din<br>and Brushes. Dimensions of Yoke, | | | | | | _ | | eries Field Windings. | nd Diusies. Difficusions of Toke, | Wiaiii i Oic | | | | | | Design of | | | 9 | | | | | Module 3 | Transformer | Assignment | Open book Test | Sessions | | | | | Topics: Introduc | ction, Design details | of Single Phase and Three | e phase Transformer, Design of co | ore, Design | | | | | of windings- Esti | imation of Number | of Turns and Conductor Cr | oss Sectional area of Primary and | Secondary | | | | | Windings, Design | n of yoke. Design of | f Tank and Cooling (Round | d and Rectangular) Tubes | | | | | | | Design of Three | | | 9 | | | | | Module 4 | Phase Induction | Assignment | Quiz | Sessions | | | | | | Motors | | | | | | | | _ | - | | nsions of Stator. Design of stator s | lots and | | | | | willuing, Choice | Design of | Estimation of Number of | STOTS TOT KOTOF. | | | | | | | Synchronous | | | 9 | | | | | Module 5 | Machines | Assignment | CAD Modelling | Sessions | | | | | | Analysis | | ^ | Dessions | | | | | | | | | 10 - | | | | | | | | | | | | | Topics: Output Equation, Choice of Specific Loadings, Main Dimensions of Stator. Design of stator slots and Winding. Magnetic Circuit & Field Winding, Design of Salient and non-salient Pole Rotors. # **Targeted Application & Tools that can be used:** Design of electrical machines for various applications. Professionally Used Software: CAD/ MATLAB/ C/C++ # **Text Book** 1. A.K Sawhney. A course in Electrical Machine Design Dhanpat Rai & Co . New Delhi # References - 1. Performance and Design of AC machines by M.G. Say, CBS publishers and Distributors pvt.Ltd. - 2. V. N. Mittle, "Design Of Electrical Machines", N.C. Jain Publishers - 3. Class Notes # **Online Resources** - 1. EBook: https://puniversity.informaticsglobal.com/ - 2. Seminar: https://onlinecourses.nptel.ac.in/noc19\_e62/ - 3. Case Study: http://www.eols.net/sample-chapters/c05/6-39a-06-02.pdf. - 4. https://www.ebookmela.co.in/download/electrical-machine-design-by-mittle **Topics relevant to "ENTREPRENEURIAL SKILLS":** Designing of various machines armature winding for developing **Entrepreneurial Skills** through **Problem Solving methodologies**. This is attained through assessment component mentioned in course handout. | Catalogue prepared by | Mr. Ravi V Angadi | |---------------------------------------------------|--------------------------------------------------| | Recommended<br>by the Board<br>of Studies on | BoS No: 15 <sup>th</sup> BoS held on 27/7/2022 | | Date of<br>Approval by<br>the Academic<br>Council | 18th Academic Council Meeting held on 03/08/2022 | (Established under the Presidency University Act, 2013 of the Karnataka Act 41 of 2013) SCHOOL : Engineering DEPARTMENT : Electrical & Electronics Engineering. DATE OF ISSUE : 27.08.2022 NAME OF THE PROGRAM : B. Tech (EEE) P.R.C. APPROVAL REF. : PU/AC-18.5/EEE 15/EEE/2019-2023 NAME OF THE COURSE : ELECTRICAL MACHINE DESIGN. COURSE CODE : EEE302 SEMESTER : 7<sup>th</sup> (7EEE) YEAR : 4<sup>th</sup> COURSE CREDIT STRUCTURE : 3-0-0-3 CONTACT HOURS : 3 Hours/ week COURSE INSTRUCTOR IN CHARGE : Mr. Ravi V Angadi. # **PROGRAM OUTCOMES:** Graduates of the B. Tech. Program in Electronics and Communication Engineering will be able to: PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. [H]. PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. [H] PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations [L]. PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions [L]. PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations [M]. **PO6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. **PO7.** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. **PO8.** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. **PO9.** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. [L] **PO11.** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. **PO12.** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. # **COURSE PREREQUISITES:** Electrical Machine I and Electrical machines II courses, Knowledge on working, construction, operating characterises and applications of machines. Basics of MATLAB and CAD Software. # **COURSE DESCRIPTION:** This course provides basic knowledge of the preliminary design of rotating DC and AC electrical machines by applying fundamental knowledge of physical and mathematical principles that have been established and considering economic aspects. This includes the design of DC machines, transformers, the design of induction motors and the design of synchronous machines. Also, the course develops critical thinking and analytical skills. The course also enhances programming and drawing skills through modern tools. #### **COURSE OBJECTIVE:** The objective of the course is to familiarize the learners with the concepts of electrical machine design and attain **Entrepreneurial Skills** through **Problem Solving** methodologies. #### **COURSE OUTCOMES:** # After the completion of the course students shall be able to: - CO 1: Discuss briefly design factors, limitations, and properties of materials used in the electrical machines. - CO 2: **Derive** the output equations of transformer, DC machines. - CO 3: Compute the necessary parameters for designing of various parts of Transformers. - CO 4: Compute the necessary parameters for designing of 3 phase induction motors. - CO 5: Compute the necessary parameters for designing of synchronous machine. # MAPPING OF C.O. WITH P.O. # [H-HIGH, M- MODERATE, L-LOW] | CO<br>NO. | PO 1 | PO 2 | PO 3 | PO 4 | PO 5 | PO 10 | |-----------|------|------|------|------|------|-------| | 1 | Н | Н | L | L | M | L | | 2 | Н | Н | L | L | M | L | | 3 | M | M | M | M | M | L | REGISTRAR Registrar | 4 | M | L | L | L | L | L | |---|---|---|---|---|---|---| | 5 | M | L | L | L | L | L | # **COURSE CONTENT (SYLLABUS):** #### Module: 1: **Basic Considerations of Electrical Machine Design:** Introduction, Fundamental aspects, Electrical Conducting Materials, Insulating Materials, Classification of Insulating materials based on Thermal Consideration. Factors for consideration in electrical machine design [08-Hrs] [Blooms 'level selected: Comprehension] #### Module: 2 **Design of DC Machines:** Output Equation, Choice of Specific Loadings, Choice of Number of Poles, Main Dimensions of armature, Design of Armature Slot Dimensions, Commutator and Brushes. Dimensions of Yoke, Main Pole and Air Gap. Design of Shunt and Series Field Windings. [09-Hrs] [Blooms 'level selected: Application] #### Module: 3: **Design of Transformer:** Introduction, Design details of Single Phase and Three phases Transformer, Design of core, Design of windings- Estimation of Number of Turns and Conductor Cross Sectional area of Primary and Secondary Windings, Design of yoke. Design of Tank and Cooling (Round and Rectangular) Tubes. [09-Hrs] [Blooms 'level selected: Application] #### Module: 4: **Design of Three Phase Induction Motors:** Design Details, choice of specific loading Main Dimensions of Stator. Design of stator slots and Winding, Choice of Length Air Gap, Estimation of Number of Slots for Rotor. Introduction to design of Synchronous Machines. [09-Hrs] [Blooms 'level selected: Comprehension] #### Module: 5: **Design of Synchronous Machine:** Output Equation, Choice of Specific Loadings, Main Dimensions of Stator. Design of stator slots and Winding. Design of Salient and non-salient Pole Rotors. [08-Hrs] [Blooms 'level selected: Comprehension] # **DELIVERY PROCEDURE (PEDAGOGY):** #### **Self-Learning Topics:** - a. Magnetic Materials, Ferromagnetic Materials: Soft Magnetic materials Solid Core Materials. - b. Electrical Sheet and Strip. - c. Cold Rolled Grain Oriented Steel # **Experiential Learning Topics:** Computer applications in electrical machine design # **Technology Enabled Learning:** - a. Conducting a Continuous Assessment using Edhitch & Microsoft Team. - b. Design of Armature winding of using AUTOCAD software. Some of the Topics are planned covered through Guest lecture by Industry Experts. # **REFERENCE MATERIALS:** # A). Textbooks: T1: A.K Sawhney. A course in Electrical Machine Design Dhanpat Rai & Co . New Delhi #### B). Reference books: - R1. Performance and Design of AC machines by M.G. Say, CBS publishers and Distributors pvt. Ltd. - R2. V. N. Mittle, "Design Of Electrical Machines", N.C. Jain Publishers - R3. Class Notes # C). Online Resources: REGISTRAR REGISTRAR - 5. EBook: https://puniversity.informaticsglobal.com/ - 6. Seminar:https://onlinecourses.nptel.ac.in/noc19\_e62/ - 7. Case Study:http://www.eols.net/sample-chapters/c05/6-39a-06-02.pdf. - 8. https://www.ebookmela.co.in/download/electrical-machine-design-by-mittle # **GUIDELINES TO STUDENTS:** - i. Maintain a separate 200 page note book for class notes. - ii. Be regular to all the classes and maintain minimum 90% of attendance. - iii. Bring Scientific Calculator to the class. - iv. Refer online study materials and videos are suggested to watch in the NTPEL site. # **SCHEDULE OF INSTRUCTION:** | Sl.<br>N | Session<br>No<br>[date if<br>possible] | Lesson Title | Topics | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |----------|----------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------|------------------|-----------| | 1. | | Program Integration & Course Integration | Overview of the<br>Course, Scopes and<br>Opportunities of<br>EMD | ı | | - | | 2. | S1 | Module No. 1 Basic Considerations of Electrical Machine Design | Course Integration & Introduction | CO1 | РРТ | T1.Ch 1 | | 3. | S2 | Basic Considerations<br>of Electrical Machine<br>Design | Introduction to Design of Machines, Design Factors | CO1 | PPT | T1.Ch 1 | | 4. | <b>S</b> 3 | Basic Considerations<br>of Electrical Machine<br>Design | Factors for consideration in electrical machine design | CO1 | РРТ | T1.Ch 1 | | 5. | <b>S</b> 4 | Basic Considerations<br>of Electrical Machine<br>Design | Electrical Conducting Materials, Insulating Materials | CO1 | PPT | T1.Ch 1 | | 6. | S5 | Basic Considerations<br>of Electrical Machine<br>Design | Desirabilities of Conducting Materials. Comparison of Aluminium and Copper wires | CO1 | PPT | T1.Ch 1 | | 7. | S6 | Basic Considerations<br>of Electrical Machine<br>Design | Classification of<br>Insulating materials<br>based on Thermal<br>Consideration | CO1 | PPT | T1.Ch 1 | | 8. | S7 | Basic Considerations<br>of Electrical Machine<br>Design | Insulating Materials,Desirable Properties, Temperature Rise | CO1 | PPT | T1.Ch 1 | | | | | and Insulating Materials | | | | |-----|-----|---------------------------------------------------------|----------------------------------------------------------------------|-----|------------------------------------------|---------| | 9. | S8 | Basic Considerations<br>of Electrical Machine<br>Design | Limitations in design | | | | | 10. | CA1 | MCQ/ Quiz | | CO1 | | | | 11. | S9 | Module No. 2<br>Design of DC<br>Machines | Course Integration & Introduction | CO2 | Chalk &<br>Talk | T1. Ch2 | | 12. | S10 | Design of DC<br>Machines | Output Equation, Choice of Specific Loadings | CO2 | Chalk &<br>Talk | T1. Ch2 | | 13. | S11 | Design of DC<br>Machines | Choice of Number of Poles, Main Dimensions of armature | CO2 | Chalk &<br>Talk | T1. Ch2 | | 14. | S12 | Design of DC<br>Machines | Design of Armature<br>Slot Dimensions | CO2 | Chalk &<br>Talk | T1. Ch2 | | 15. | S13 | Design of DC<br>Machines | Design of Commutator and Brushes | CO2 | Chalk &<br>Talk | T1. Ch2 | | 16. | S14 | Design of DC<br>Machines | Design of Dimensions of Yoke, Main Pole and Air Gap | CO2 | Chalk &<br>Talk | T1. Ch2 | | 17. | S15 | Design of DC<br>Machines | Design of Shunt and<br>Series Field<br>Windings. | CO2 | Chalk &<br>Talk | T1. Ch2 | | 18. | S16 | Design of DC<br>Machines | Numerical solving<br>based on DC<br>Machine design | CO2 | Chalk &<br>Talk | T1. Ch2 | | 19. | S17 | Design of DC<br>Machines | Numerical solving<br>based on DC<br>Machine design | CO2 | Chalk &<br>Talk | T1. Ch2 | | 20. | CA1 | Model Design | | CO2 | | | | 21. | S18 | Module No. 3<br>Design of<br>Transformer | Course Integration & Introduction | CO3 | Chalk &<br>Talk /<br>Industrial<br>Visit | T1 Ch5 | | 22. | S19 | Design of<br>Transformer | Design details of<br>Single Phase and<br>Three phases<br>Transformer | CO3 | Chalk &<br>Talk /<br>Industrial<br>Visit | T1 Ch5 | | 23. | S20 | Design of<br>Transformer | Choice of Specific<br>Loadings,<br>Expression for<br>Volts/Turn | CO3 | Chalk &<br>Talk /<br>Industrial<br>Visit | T1 Ch5 | | 24. | S21 | Design of<br>Transformer | Design of transformer core | CO3 | Chalk &<br>Talk /<br>Industrial<br>Visit | T1 Ch5 | | 25. | S22 | Design of<br>Transformer | Estimation of Number of Turns and Conductor Cross Sectional area of Primary and Secondary Windings | CO3 | Chalk &<br>Talk /<br>Industrial<br>Visit | T1 Ch5 | |-------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------|---------------------------| | 26. | S23 | Design of<br>Transformer | Estimation of Number of Turns and Conductor Cross Sectional area of Primary and Secondary Windings | CO3 | Chalk &<br>Talk /<br>Industrial<br>Visit | T1 Ch5 | | 27. | S24 | Design of<br>Transformer | Design of yoke. Design of Tank and Cooling (Round and Rectangular) Tubes | CO3 | Chalk &<br>Talk /<br>Industrial<br>Visit | T1 Ch5 | | 28. | S27 | Design of<br>Transformer | Numerical solving<br>based on<br>transformer design | CO3 | Chalk &<br>Talk /<br>Industrial<br>Visit | T1 Ch5 | | 29. | S27 | Design of<br>Transformer | Numerical solving based on transformer design | CO3 | Chalk &<br>Talk /<br>Industrial<br>Visit | T1 Ch5 | | 30. | CA3 | Case Study | | CO3 | | | | | | | | | | | | 31. | S28 | Module No. 4 Design of Three Phase Induction Motors | Course Integration & Introduction | CO4 | Chalk &<br>Talk | T1 Ch11 | | 31. | S28<br>S29 | Design of Three<br>Phase Induction | | CO4 | | T1 Ch11 | | | | Design of Three Phase Induction Motors Design of Three Phase Induction | & Introduction Design Details, choice of specific | | Talk Chalk & | | | 32. | S29 | Design of Three Phase Induction Motors Design of Three Phase Induction Motors Design of Three Phase Induction | & Introduction Design Details, choice of specific loading. Main Dimensions of | CO4 | Talk Chalk & Talk Chalk & | T1 Ch11 | | 32. | S29<br>S30 | Design of Three Phase Induction Motors | & Introduction Design Details, choice of specific loading. Main Dimensions of Stator. Design of stator slots and Winding, Choice of Length Air Gap Estimation of Number of Slots for Rotor | CO4 | Talk Chalk & Talk Chalk & Talk Chalk & Chalk & | T1 Ch11 | | 32.<br>33. | S29<br>S30 | Design of Three Phase Induction Motors | & Introduction Design Details, choice of specific loading. Main Dimensions of Stator. Design of stator slots and Winding, Choice of Length Air Gap Estimation of Number of Slots for | CO4 CO4 | Talk Chalk & Talk Chalk & Talk Chalk & Talk Chalk & Talk | T1 Ch11 T1 Ch11 | | 32.<br>33.<br>34. | S29 S30 S31 | Design of Three Phase Induction Motors | & Introduction Design Details, choice of specific loading. Main Dimensions of Stator. Design of stator slots and Winding, Choice of Length Air Gap Estimation of Number of Slots for Rotor Estimation of Number of Slots for Squirrel Cage | CO4 CO4 CO4 | Talk Chalk & Talk | T1 Ch11 T1 Ch11 T1 Ch11 | | 38. | S35 | Design of Three<br>Phase Induction<br>Motors | Numerical solving<br>based on Induction<br>Motor design | CO4 | Chalk &<br>Talk | T1 Ch11 | |-----|-----|----------------------------------------------|----------------------------------------------------------------|-----|-----------------|---------| | 39. | S36 | Design of Three Phase Induction Motors | Numerical solving<br>based on Induction<br>Motor design | CO4 | Chalk &<br>Talk | T1 Ch11 | | 40. | CA4 | Open Book test | | CO4 | | | | 41. | S37 | Module No. 5 Design of Synchronous Machine | Program Integration & Introduction | CO5 | Chalk &<br>Talk | T1 Ch11 | | 42. | S38 | Design of Synchronous Machine | Output Equation, Choice of Specific Loadings | CO5 | Chalk &<br>Talk | T1 Ch11 | | 43. | S39 | Design of Synchronous Machine | Main Dimensions of<br>Stator | CO5 | Chalk &<br>Talk | T1 Ch11 | | 44. | S40 | Design of Synchronous Machine | Design of stator slots and Winding | CO5 | Chalk &<br>Talk | T1 Ch11 | | 45. | S41 | Design of Synchronous Machine | Magnetic Circuit & Field Winding | CO5 | Chalk &<br>Talk | T1 Ch11 | | 46. | S42 | Design of Synchronous Machine | Design of Salient<br>and non- salient<br>Pole Rotors | CO5 | Chalk &<br>Talk | T1 Ch11 | | 47. | S43 | Design of<br>Synchronous<br>Machine | Numerical solving<br>based on<br>Synchronous<br>Machine design | CO5 | Chalk &<br>Talk | T1 Ch11 | | 48. | S44 | Design of<br>Synchronous<br>Machine | Numerical solving<br>based on<br>Synchronous<br>Machine design | CO5 | Chalk &<br>Talk | T1 Ch11 | | 49. | S45 | Design of<br>Synchronous<br>Machine | Numerical solving<br>based on<br>Synchronous<br>Machine design | CO5 | Chalk &<br>Talk | T1 Ch11 | **Topics relevant to "ENTREPRENEURIAL SKILLS":** Designing of various machines armature winding for developing **Entrepreneurial Skills** through **Problem Solving methodologies**. This is attained through the **Assignment** as mentioned in the assessment component. # **ASSESSMENT SCHEDULE:** | Sl.no | Assessment type | contents | Course<br>outcome<br>Number | Duration<br>In Minutes | Marks | Weightage | Venue, Date & Time | |-------|---------------------------------------------------|----------|-----------------------------|------------------------|-------|-----------|--------------------| | 1 | Assignment-I (Calculations of machine parameters) | Module-1 | CO1 & 2 | 60 | 10 | 5% | MS Teams | | 3 | Assignment-II (Model Design) | Module-2 | CO3 | 60 | 10 | 5% | Edhitch | |---|-----------------------------------|-----------------------------------------------|--------------------------------|-----|-----|-----|-----------------| | 4 | Midterm<br>Examination | Module- 3<br>& 4 <sup>th</sup><br>Module half | CO 4 &<br>CO 5 | 90 | 60 | 30% | Notify<br>later | | 5 | Assignment-III (Case study) | Module-3 | CO 4 | 60 | 10 | 5% | MS Teams | | 6 | Assignment-IV<br>(Open Book Test) | <b>M</b> odule-4 | CO 5 | 60 | 10 | 5% | MS Teams | | 7 | End Term Final<br>Examination | Module-<br>1,2,3 & 4 | CO1, CO2,<br>CO3, CO4<br>& CO5 | 180 | 100 | 50% | Notify<br>later | # **COURSE CLEARANCE CRITERIA:** - i. Minimum of 75% Attendance is most to take up examination. - ii. Minimum of 40% score is must in internal assessment. - iii. Minimum of 30% in the Final Examination. - iv. Make-up policy will be only as per academic regulation. - v. There will be no make-up for ASSIGNMENT and QUIZ # CONTACT TIMINGS IN THE CHAMBER FOR ANY DISCUSSIONS: It will be announced in the class. Interested students may meet the Instructor In-charge during the Chamber Consultation Hour to clear doubts. # SAMPLE THOUGHT PROVOKING QUESTIONS | Sl. No | Question | Marks | CO No | Bloom's Level | |--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|---------------| | 1 | Discus the factors which imposes limitation on electrical machine design | 05 | CO 1 | Knowledge | | 2 | Briefly discuss the various factors need to be consider during the selection of Specific magnetic and electric loading. | 05 | CO 1 | Comprehension | | 3 | Summaries the advantages of large length of air gap in DC machine and derive how to design the air gap length in dc machine | 05 | CO 2 | Comprehension | | 4 | A 350 kW, 500 Volts, 450 rpm, 6-pole dc generator is built with an armature diameter of 0.87 mt and core length of 0.32 mt. The lap wound armature has 660 conductors. Estimate the specific electric loading and magnetic loading | 10 | CO 2 | Comprehension | | 5 | The tank of 1250 kVA, natural oil cooled transformer has the dimension length, width and height as 0.65x1.55x1.85mt respectively. The full load loss is 13.1 kW, loss dissipation due to radiation is 6w/m °c, loss dissipation due to convection is 6.5 6w/m-°c, improvement in convection due to provision of tubes is 40%, temp rise=40 °C, length of each tube is 1mt, diameter is 50mm, Estimate the number of tubes for this transformer, neglect the top and bottom surface of the tank as regards the cooling. | 10 | CO 3 | Comprehension | | 6 | A 250 kVA, 6600/400 V, 3-φ, core type transformer has a total loss of 4800 watts on full load. The transformer tank is 1.25mt in height and 1mtx0.5mt in plan. Design a suitable scheme for cooling tubes if the average temp rise is to be limited to 35°C. The diameter of the tube is 50mm and are spaced 75mm from each other. The average length of the tube is 0.15mt. | 10 | CO 3 | Comprehension | |----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|---------------| | 7 | Estimate the main dimensions of, air gap, stator slots, stator turns/phase and cross sectional area of stator and conductors for a three phase 15HP, 400 V, 6-Pole, 50 Hz, 975 rpm Induction motor is suitable for Star-Delta starting. Bav=0.45 Wb/mt2, ac=20000, amp-Cond/mt, $L/\tau$ =0.85, $\eta$ =0.9, power factor=0.85, Kw=0.96. | 10 | CO4 | Comprehension | | 8 | Identify and list out the various factors that should be considered while the choice of length of air gap in the Induction motor | 05 | CO4 | Comprehension | | 9 | For a 250 kVA, 1100 Volts, 12 Pole, 500 rpm, 3- $\phi$ alternator is having the air gap density is 0.6 Wb/mt2 and Specific electrical loading is 30,000 Amp-Cond /mt and L/ $\tau$ =1.5. Estimate the air gap diameter, core length, number of stator conductors, number of stator slots and cross section of stator conductor. | 10 | CO5 | Comprehension | | 10 | 5. With usual notations derive an Output equation of Synchronous machine in terms of its main dimensions and specific loadings | 05 | CO5 | Comprehension | # **Target Set For Course Outcome Attainment:** | Sl.<br>No | C.O.<br>No. | Course Outcomes | Target set for attainment in percentage | Actual C.O.<br>Attainment<br>In Percentage | Remarks on attainment & Measures to enhance the attainment | |-----------|-------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|------------------------------------------------------------| | 01 | CO1 | Discuss briefly design factors, limitations, and properties of materials used in the electrical machines. | 50% | | | | 02 | CO2 | Derive the output equations of transformer, DC machines. | 40% | | | | 03 | CO3 | Compute the necessary parameters for designing of various parts of Transformers | 40% | | | | 04 | CO4 | Compute the necessary parameters for designing of 3 phase induction motors. | 50% | | | | 05 | CO5 | Compute the necessary parameters for designing of synchronous machine. | 50% | | | Any specific suggestion/Observations on content/coverage/pedagogical methods used etc.: Signature of the course Instructor Mr. Ravi V Angadi This course has been duly verified Approved by the D.A.C. Signature of the Chairperson D.A.C. | Course Code: | Course Title: Electr | ic Vehicles | | | | | | |------------------------------|----------------------------|-------------------------|-------------------|-----------|------------|---------------|-----------------| | <b>EEE 319</b> | Type of Course: 1]. I | Discipline Elective | L-T-P-C | 3 | 0 | 0 | 3 | | | 2]. | Theory only | | | | | | | Version No. | 2.0 | | | | | • | | | <b>Course Pre-requisites</b> | Basics of Electric circ | uits, Fundamentals o | of DC and AC m | otors | | | | | Anti-requisites | | | | | | | | | <b>Course Description</b> | This course introduces | s the fundamental co | ncepts, principle | s, analy | sis and | design of hyl | brid and | | | electric vehicles. This | course helps studen | nts to understand | vehicle | e mecha | nics and wo | rking of | | | Electric Vehicles and | l recent trends. Thε | e course enables | s them | to analy | yze differen | t powe | | | converter topology use | ed for electric vehicle | e applications. A | lso, it p | rovides t | he ability to | develoj | | | the electric propulsion | on unit and its cor | ntrol for applica | ation o | f electri | ic vehicles | through | | | assignments. The cour | rse is both conceptua | al and analytical | in natu | re and n | eeds fair kno | wledge | | | of mathematical and c | - | · | | | | | | Course Objective | The objective of the co | 1 0 | e the learners wi | th the c | oncepts | of Electric V | Vehicle | | ourse ox <b>jecu</b> ; e | and attain Entreprene | | | | • | | , 0111010 | | <b>Course Out Comes</b> | On successful comple | etion of the course 1 | the students sha | ll be al | ble to: | | | | | 1. Describe the i | mportance and confi | igurations of Ele | ctric V | ehicles in | n recent tren | ds | | | 2. Discuss the de | esign parameters of I | Electric Vehicles | S | | | | | | | e properties of batter | | | drive sy | stems | | | | | ent charging method | | | , | | | | | | 88 | | | | | | | <b>Course Content:</b> | | | | | | | | | Module 1 | Introduction To | Assignment | Computation an | d Data | | No. of Sess | zione: 6 | | Widule 1 | Electric Vehicles | | Analysis | | | INU. UL SESS | 10115. U | | Review of Conventional | Vehicle, History of ele | ctric vehicles, impac | ct of modern dri | ve-trair | ns on ene | ergy supplies | s, Type | | of EVs, Configurations a | nd Architectures of EV | S. | | | | | | | M- 1-1- 2 | Design Parameters Of | Oi- | Data collection | and | | N C C | 10 | | Module 2 | Electric Vehicles | Quiz | Analysis | | Г | No. of Sessi | ons: 12 | | Introduction, dynamics o | of the vehicle, capacity a | and weight of the ve | hicle, torque and | type of | f | | | | Motor used, speed requir | | • | • | • • | | y selection, | <b>Fractive</b> | | effort in normal driving, | | | , | | | • | | | | Energy Storage For | 1 | | | | | | | | Evs And Electric | | | • | | | | | Module 3 | Propulsion Systems | Case study | Simulation and | data | | No. of Sessi | ions:12 | | | 1 Topulsion Systems | | analysis | | | | | | | | | | | | | | | Energy storage requirem | ents, Battery parameter | rs, Types of Batterie | es, Super capacit | ors, Fu | el Cell b | ased energy | storag | | and its analysis, SoC of 1 | batteries, Introduction t | o electric componen | its, EV considera | ations, ( | Configu | ration and co | ontrol o | | DC motor drives, and AC | | • | | | C | | | | , | | | | | | | | | Module 4 | Power Converters For | anmont | a collection | | | No. of Sessi | ong.10 | | Widule 4 | Battery Charging | ignment | a confection | | | ino. of Sessi | 10115:10 | | CHAdeMO, Tesla, Europ | pean EV Plug Standard | s, Charging methods | and characterist | tics, V2 | G, G2V | , V2B, V2H, | , | | isolated bidirectional DC | 2-DC converter, and hig | h frequency transfor | mer based isolat | ed char | ger topo | ology. | | | Targeted Application & | & Tools that can be us | ed: | | | | | | | Application: Automotiv | e industry. | | | | | | | | Software tools: Matlab-S | · | | | | | | | | | | | | | | | | Text Book 1.Mehrdad Ehsani, YiminGao, sebastien E. Gay and Ali Emadi, —Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design CRC Press, 2009. 2. Iqbal Husain, —Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2011, Second Edition. #### References - 1. James Larminie and John Loury, —Electric Vehicle Technology-Explainedl, John Wiley & Sons Ltd., 2003, Second Edition. - 2. C.C. Chan and K.T. Chanu Modern Electric Vehicle Technology, OXFORD University, 2011 - Sheldon S. Williamson, Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles, Springer, 2013 - 4. Chris Mi, M. A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2011, Second Edition # Online learning resources: - 1. https://nptel.ac.in/courses/108/102/108102121/ - 2. <a href="https://nptel.ac.in/courses/108/106/108106170/">https://nptel.ac.in/courses/108/106/108106170/</a> - 3. IEEE Explore School of Engineering - 4. https://www.coursera.org/learn/electric-vehicles-mobility - 5. Seminar: <a href="https://puniversity.informaticsglobal.com:2069/search/searchresult.jsp?newsearch=true&queryText=ELECTRIC%20VEHICLES">https://puniversity.informaticsglobal.com:2069/search/searchresult.jsp?newsearch=true&queryText=ELECTRIC%20VEHICLES</a> - 6. Video: <a href="https://www.youtube.com/watch?v=GHGXy\_sibgQ">https://www.youtube.com/watch?v=GHGXy\_sibgQ</a> - Text book of Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, Infrastructure and the Market, Gianfranco Pistoia, 1st ed. Amsterdam: Elsevier. 2010 <a href="https://puniversity.informaticsglobal.com:2284/ehost/detail/detail?vid=0&sid=52da4e6e-8813-45d5-87f9-73b9f493f358%40redis&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#AN=342445&db=nlebk">https://puniversity.informaticsglobal.com:2284/ehost/detail/detail?vid=0&sid=52da4e6e-8813-45d5-87f9-73b9f493f358%40redis&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#AN=342445&db=nlebk</a> # **Case Study:** - I. <a href="https://www.simpli.com/answers">https://www.simpli.com/answers</a> - II. <a href="https://www.upgrad.com/ev\_technology/iit-delhi">https://www.upgrad.com/ev\_technology/iit-delhi</a> - III. <a href="https://www.coursera.org/">https://www.coursera.org/</a> Topics relevant to "ENTREPRENEURIAL SKILLS": Vehicle fundamentals, total tractive effort calculation and design of drive train for different vehicle architectures for developing the Entrepreneurial Skills by using Problem Solving methodologies. This is attained through the assessment component mentioned in course handout. | Dorving methodologies. | ins is attained through the assessment component mentioned in course nandout. | |---------------------------------------------|-------------------------------------------------------------------------------| | Catalogue prepared by | Mr.K Sreekanth Reddy | | Recommended by the Board of Studies on | BoS No: 12 <sup>th</sup> BoS held on 27/7/2021 | | Date of Approval by the<br>Academic Council | 16 <sup>th</sup> Academic Council meeting held on 23/10/2021 | (Established under the Presidency University Act, 2013 of the Karnataka Act 41 of 2013) # A-2[2020] COURSE HAND OUT SCHOOL: Engineering DEPT.: EEE DATE OF ISSUE: 11/03/2022 NAME OF THE PROGRAM : B.TECH (EEE) P.R.C. APPROVAL REF. : PU/AC-16/EEE/2019-2023/2021 SEMESTER/YEAR : VI / 3<sup>rd</sup> COURSE TITLE & CODE : Electric Vehicles & EEE 319 COURSE CREDIT STRUCTURE : 3-0-0-3 CONTACT HOURS : 3 (Mon 6<sup>th</sup> hr, Tue 2<sup>nd</sup> hr, Thu 3<sup>rd</sup> hr) COURSE INSTRUCTOR : Mr. K Sreekanth Reddy COURSE URL : https://www.edhitch.com/gotodashboard #### PROGRAM OUTCOMES: Graduates of the B.Tech. Program in Electrical and Electronics Engineering will be able to: PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.(H) PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.(H) PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.(L) **PO4.** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.(L) **PO6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. **PO7.** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. **PO8. Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. **PO9.** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.(L) PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. # **COURSE PREREQUISITES:** Fundamental knowledge of power electronics, machines, control systems and drives. # **COURSE DESCRIPTION:** This course introduces the fundamental concepts, principles, analysis and design of hybrid and electric vehicles. This course aids to understand vehicle mechanics and working of Electric Vehicles and recent trends. The course enables them to analyze different power converter topology used for electric vehicle applications. Also, it provides the ability to develop the electric propulsion unit and its control for application of electric vehicles through assignments. The course is both conceptual and analytical in nature and needs fair knowledge of mathematical and computing. # **COURSE OBJECTIVE:** The objective of the course is to familiarize the learners with the concepts of Electric Vehicles and attain **Entrepreneurial**Skills through **Problem Solving** methodologies. # **COURSE OUTCOMES:** On successful completion of the course the students shall be able to: - 1) Describe the importance and configurations of Electric Vehicles in recent trends - 2) Discuss the design parameters of Electric Vehicles - 3) Summarize the properties of batteries and electric vehicle drive systems - 4) Explain different charging methods of Electric vehicles. # MAPPING OF C.O. WITH P.O.: # [H-HIGH, M- MODERATE, L-LOW] | C.O.N0. | P.O.01 | P.O.02 | P.O.03 | P.O.05 | P.O.10 | P.O.012 | |---------|--------|--------|--------|--------|--------|---------| | 1 | Н | Н | | | L | | | 2 | Н | Н | L | | | L | | 3 | Н | M | | | L | L | | 4 | Н | M | M | L | L | L | #### **COURSE CONTENT (SYLLABUS):** # **MODULE: 1: INTRODUCTION TO ELECTRIC VEHICLES** History of electric vehicles, impact of modern drive-trains on energy supplies, Types of EVs, Configurations and Architectures of EVs. [8-Hrs] [Blooms 'level selected: Knowledge] #### **MODULE: 2: DESIGN PARAMETERS OF ELECTRIC VEHICLES** Introduction, dynamics of the vehicle, capacity and weight of the vehicle, torque and type of Motor used, speed required (during up-hill, down-hill and normal road), range of the vehicle, battery selection, Tractive effort in normal driving, Design prospects of EVs [13-Hrs] [Blooms 'level selected: Comprehension] # MODULE: 3: ENERGY STORAGE FOR EVS AND ELECTRIC PROPULSION SYSTEMS Energy storage requirements, Battery parameters, Types of Batteries, Super capacitors, Fuel Cell based energy storage and its analysis, SoC of batteries, Introduction to electric components, EV considerations, Configuration and control of DC motor drives, AC motor drives. [12-Hrs] [Blooms 'level selected: Comprehension] # **MODULE: 4: POWER CONVERTERS FOR BATTERY CHARGING** CHAdeMO, Tesla, European EV Plug Standards, Charging methods and characteristics, G2V, V2B, V2H, isolated bidirectional DC-DC converter, and high frequency transformer based isolated charger topology [12Hrs] [Blooms 'level selected: Comprehension] # **DELIVERY PROCEDURE (PEDAGOGY):** # **Topics for Self-Learning:** - 1. Battery management system. - 2. Selection of wires for EVs. - 3. Different types of controllers that are used in EVs. # **Experiential Learning Topics:** - 1. Power converter based Charging method using MATLAB Simulink - 2. Vehicle dynamics using MATLAB. #### Note: - 1. All the Topics will be covered through **Lecture Method.** - 2. E-materials available at the website of NPTEL- http://nptel.ac.in/https://www.coursera.org/learn/electric-vehicles-mobility # **REFERENCE MATERIALS:** #### **Textbooks:** T1: M. Ehsani, Y. Gao, S. Gay and Ali Emadi, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, CRC Press, 2005 T2: Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003. #### **Reference book(s):** **R1**. Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004. R2. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003. #### Other resources: Reputed journal papers are to be referred. - 1. https://nptel.ac.in/courses/108/102/108102121/ - 2. https://nptel.ac.in/courses/108/106/108106170/ - 3. IEEE Explore School of Engineering - 4. <a href="https://www.coursera.org/learn/electric-vehicles-mobility">https://www.coursera.org/learn/electric-vehicles-mobility</a> - 5. Seminar:https://puniversity.informaticsglobal.com:2069/search/searchresult.jsp?newsearch=true&queryText=E LECTRIC%20VEHICLES - 6. Video: <a href="https://www.youtube.com/watch?v=GHGXy\_sjbgQ">https://www.youtube.com/watch?v=GHGXy\_sjbgQ</a> - 7. https://presiuniv.knimbus.com/user#/home 8. Text book of Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, Infrastructure and the Market, Gianfranco Pistoia, 1st ed. Amsterdam: Elsevier. 2010 <a href="https://puniversity.informaticsglobal.com:2284/ehost/detail/detail?vid=0&sid=52da4e6e-8813-45d5-87f9-73b9f493f358%40redis&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#AN=342445&db=nlebk">https://puniversity.informaticsglobal.com:2284/ehost/detail/detail?vid=0&sid=52da4e6e-8813-45d5-87f9-73b9f493f358%40redis&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#AN=342445&db=nlebk</a> # **GUIDELINES TO STUDENTS:** (Here mention a few tips to study this course effectively) - The students are advised to be very much regular to the classes and sincerely attempt the learnings listed in the Pedagogical section. - The students are advised to take down the notes legibly which serves as a firsthand information to study and revise lecture topics on day to day basis. - The students are advised to visit the Edhitch portal and Microsoft teams on a regular basis to study the supporting materials shared by the course instructors. - The students are advised to use the journals, technical magazines and other relevant materials. - The students are advised to watch the video lectures available online to understand and review the concepts delivered in the class as well as problems assigned for self-learning topics. COURSE SCHEDULE: (This is a macro level planning. Mention the unit wise expected starting and ending dates along with the tests/assignments/quiz and any other activities) [allot about 75% for delivary,about10 to 12% for Evaluation Discussion, about 10 to 15% on integrating the learning Modules within the course and to the program] | Sl. No. | ACTIVITY | STARTING<br>DATE | CONCLUDING<br>DATE | TOTAL NUMBER<br>OF PERIODS | |---------|------------------------------------------------|--------------------------|--------------------|----------------------------| | 01 | Program integration Over<br>View of the course | 24-03-2022 | 28-03-2022 | 02 | | 02 | Module: 01 | 28-03-2022 | 7-04-2022 | 06 | | 03 | Integration of module 2 | 11-4-2022 | 11-4-2022 | 01 | | 04 | Module: 02 | 12-04-2022 | 12-05-2022 | 08 | | 05 | Test-1 | 18-04-2022 | 20-04-2022 | NA | | 06 | Test-1 Paper Discussion | 21-04-2022 | 21-04-2022 | 01 | | 07 | Module: 02 | 25-04-2022 | 12-05-2022 | | | 08 | Course Integration of Module:3 | 16-05-2022 | 16-05-2022 | 01 | | 09 | Module:03 | 17-05-2022 | 09-6-2022 | 6 | | 10 | Test-II | 23-05-2022 | 26-05-2022 | NA | | 11 | Discussion of Test-2 paper | 30-05-2022 | 30-05-2022 | 01 | | 12 | Module:03 | 31-05-2022 | 09-06-2022 | | | 13 | Case Study / Mini Project | 31/3/2022 | 02/6/2022 | NA | | 14 | Module 4 Course Integration | 13-06-2022 | 20-06-2022 | 05 | | 15 | Program integration | 20/06/2022 | 20/6/2022 | | | 16 | Quiz | May 1 <sup>st</sup> week | | 01 Extra class | # SCHEDULE OF INSTRUCTION: # MODULE: 1: INTRODUCTION TO ELECTRIC VEHICLES | Sl.<br>no | Session no | Lesson Title | Topics | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |-----------|------------------|--------------------------|----------------------------------------------------------------------------------|-----------------------------|------------------|-----------| | 1 | S1<br>24/3/2022 | Program<br>Integration | | | | | | 2 | S2<br>28/3/2022 | Course<br>Integration | Introduction to course | | Lecture<br>Mode | T1:Ch.1 | | 3 | S 3<br>29/3/2022 | History of | History of hybrid electric,<br>electric and fuel cell<br>vehicles | CO. 1 | Lecture<br>Mode | T1:Ch.1 | | 4 | S4<br>31-3-2022 | Modern<br>Transportation | Impact of different transportation technologies on environment and energy supply | CO. 1 | Lecture<br>Mode | T1:Ch.1 | | 5 | S5<br>4-4-2022 | | Types of EVs, | CO. 1 | Lecture<br>Mode | T1:Ch.1 | | 6 | S6<br>5-4-2022 | EVs | Configurations of EVs | CO. 1 | Lecture<br>Mode | T1:Ch.5 | | 7 | \$7<br>7-4-2022 | EVs | Configurations of EVs | CO. 1 | Lecture<br>Mode | T1:Ch.5 | | 8 | S8<br>11-4-2022 | Hybrid<br>Electric | Architectures of Hybrid<br>Electric Drive Trains | CO. 1 | Lecture<br>Mode | T1:Ch.6 | | | | | Module 1 is completed | | | | # MODULE: 2: DESIGN PARAMETERS OF ELECTRIC VEHICLES | Sl. | Session no | Lesson Title | Topics | Course | Delivery | Reference | |-----|------------------|-----------------------|-------------------------------------------------------------------|-------------------|------------------------------|------------------| | no | Session no | Ecsson True | Topics | Outcome<br>Number | Mode | Reference | | 1 | S9<br>11-4-2022 | Course<br>Integration | Introduction of Design parameters | CO. 2 | Lecture<br>Mode | Technical papers | | 2 | S10<br>12-4-2022 | | Test-1 paper Discussion | | | | | 3 | S11<br>21-4-2022 | | Dynamics of the vehicle | CO. 2 | Lecture<br>Mode | Technical papers | | 4 | S12<br>25-4-2022 | | capacity and weight of the vehicle, | CO. 2 | Lecture<br>Mode | Technical papers | | 5 | S13<br>26-4-2022 | | torque and type of Motor used | CO. 2 | Lecture<br>Mode | Technical papers | | 6 | S14<br>28-4-2022 | Design<br>parameters | speed required (during uphill, down-hill and normal road), | CO. 2 | Lecture<br>Mode | Technical papers | | 7 | S15<br>3-5-2022 | | range of the vehicle,<br>battery selection, Energy<br>Consumption | CO. 2 | Lecture<br>Mode | Technical papers | | 8 | S16<br>5-5-2022 | | Tractive effort in normal driving | CO. 2 | Lecture<br>Mode | Technical papers | | 9 | S17<br>6-5-2022 | | Tractive effort in normal driving | CO. 2 | Lecture<br>Mode | Technical papers | | 10 | S18<br>8-5-2022 | | Design prospects of EVs | CO. 2 | Lecture<br>Mode | T1 | | 11 | S19<br>10-5-2022 | | Design prospects of EVs | CO. 2 | Lecture<br>Mode | Т1 | | | | | Vehicle dynamics using MATLAB. | | Experienti<br>al<br>learning | | # Module 2 is completed # MODULE: 3: ENERGY STORAGE FOR EVS AND ELECTRIC PROPULSION SYSTEMS | | Session no | Lesson Title | Topics | Course | Delivery | Reference | |----|------------|-----------------------|----------------------------------|-------------------|----------|----------------| | no | | | - | Outcome<br>Number | Mode | | | | S20 | Course | Energy storage | | | | | 1 | 12-05-2022 | Integration | requirements | | | | | | S21 | Energy | Battery parameters | | Lecture | T1.Ch.13 | | 2 | 16-5-2022 | Storage | | CO. 3 | Mode | | | | S22 | | Types of Batteries | | Lecture | T1.Ch.13 | | 3 | 17-5-2022 | | | CO. 3 | Mode | | | | S23 | | Test-2 Paper Discussion | | Lecture | T1.Ch.13 | | 4 | 19-5-22 | | | CO. 3 | Mode | | | | S24 | | Super Capacitors | | Lecture | T1.Ch.13 | | 5 | 30-5-2022 | | | CO. 3 | Mode | | | | S25 | | Fuel Cell based energy | | Lecture | T1.Ch.13 | | 6 | 31-5-2022 | | storage and its analysis, | CO. 3 | Mode | | | | S26 | | SoC & DoD of batteries | | Lecture | T1.Ch.13 | | 7 | 1-06-2022 | | | CO. 3 | Mode | | | | S27 | | Introduction to electric | | Lecture | T1.Ch.7 | | 8 | 2-06-2022 | | components, EV<br>Considerations | CO. 3 | Mode | | | | S28 | Electric | Configuration and control | | Lecture | T1.Ch.7 | | 9 | 6-6-2022 | Propulsion<br>Systems | DC motor drives | CO. 3 | Mode | | | | S29 | | Configuration and control | | Lecture | T1.Ch.7 | | 10 | 7-6-2022 | | AC motor drives | CO. 3 | Mode | | | | Self | | Different types of | | | Library | | | Learning | | controllers that are used in | | | IEEE Explore | | | Topic | | EVs. | | | - School of | | | | | | | | Engineering | | | | | | | | https://punive | | | | | | | | rsity.informat | | | | | | | _ | icsglobal.com | | | | | | | | /login | REGISTRAR (Registrar | | Case study/Mini project submission | | | |--|------------------------------------|--|--| | | Module 3 is completed | | | # **MODULE: 4: POWER CONVERTERS FOR BATTERY CHARGING** | 1 | | | Outcome<br>Number | Mode | | |-----------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------| | S30<br>9-6-2022 | Course<br>Integration | CHAdeMO, Tesla,<br>European EV Plug<br>Standards | CO .4 | Lecture<br>Mode | Technical papers | | S31<br>10-6-2022 | | CHAdeMO, Tesla,<br>European EV Plug<br>Standards | CO .4 | Lecture<br>Mode | Technical papers | | S32<br>12-6-22 | | Charging methods and characteristics | CO .4 | Lecture<br>Mode | Technical papers | | S33<br>13-6-2022 | | Charging from Grid | CO .4 | Lecture<br>Mode | Technical papers | | S34<br>14-6-2022 | Charging<br>Methods | G2V, V2B, V2H | CO .4 | Lecture<br>Mode | Technical papers | | S35<br>16-6-2022 | | G2V, V2B, V2H | CO .4 | Lecture<br>Mode | Technical papers | | S36<br>17-06-<br>2022 | | isolated bidirectional DC-DC converter | CO .4 | Lecture<br>Mode | Technical papers | | S37<br>18-6-2022 | | isolated bidirectional DC-DC converter | CO .4 | Experient ial mode | Technical papers | | S31<br>20-6-2022 | | Overview of different<br>Charging systems<br>Program Integration | CO .4 | Lecture<br>Mode | Technical papers | | | 9-6-2022 S31 10-6-2022 S32 12-6-22 S33 13-6-2022 S35 16-6-2022 S36 17-06- 2022 S37 18-6-2022 S31 | 9-6-2022 Integration S31 10-6-2022 S32 12-6-22 S33 13-6-2022 S34 14-6-2022 S35 16-6-2022 S36 17-06- 2022 S37 18-6-2022 S31 | S31 CHAdeMO, Tesla, European EV Plug Standards S32 Charging methods and characteristics S33 Charging from Grid 13-6-2022 S34 Charging Methods G2V, V2B, V2H G2V, V2B, V2H G2V, V2B, V2H I6-6-2022 S36 isolated bidirectional DC-DC converter S37 isolated bidirectional DC-DC converter S31 Overview of different Charging systems | S31 | Salintegration European EV Plug | **Topics relevant to "ENTREPRENEURIAL SKILLS":** Vehicle fundamentals, total tractive effort calculation and design of drive train for different vehicle architectures for developing the **Entrepreneurial Skills** by using **Problem Solving** methodologies. This is attained through the **Assignment** as mentioned in the assessment component. # ASSESSMENT SCHEDULE: | | SSMENT SCH | | Commen | Dumatia | mark | woich4c | Vones | |-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------|-----------------------------|-----------|---------------|-------------------------------------------| | Sl.n<br>o | Assessmen t type[Inclu de here assessment method for self- learning component also] | contents | Course<br>outcom<br>e<br>Numbe<br>r | Duratio<br>n<br>In<br>Hours | mark<br>s | weighta<br>ge | Venue,<br>DATE<br>&TIM<br>E | | 1 | Assignmen<br>t 1<br>Problem<br>Solving | Topic can be selected from any Module | CO 2<br>and CO<br>4 | - | 30 | 15% | 4 <sup>th</sup> Week of May 2022 | | 2 | Test 1 | Module-1&2 | CO1 | 1 hr | 30 | 15% | 18-04-<br>2022 to<br>20-04-<br>2022 | | 3 | Test 2 | Module-2&3 | CO2 | 1 hr | 30 | 15% | 23-05-<br>2022 to<br>26-05-<br>2022 | | 4 | Assignmen t 2 as self Learning topics Review of digital/e- resources from Pres. Univ.link given in the references section (Mandatory to submit the screenshots of accessing digital Resource. Otherwise it will not be evaluated | https://puniversity.informaticsglobal.com/login | CO3 | - | 10 | 05% | 1 <sup>st</sup><br>Week<br>of May<br>2022 | | 5 | End Term<br>Final<br>Examinatio<br>n | Module-1,2,3 & 4 | CO1-<br>CO4 | 3 hrs | 100 | 50% | 27-06-<br>2022 to<br>09-07-<br>2022 | |---|--------------------------------------|------------------|-------------|-------|-----|-----|-------------------------------------| |---|--------------------------------------|------------------|-------------|-------|-----|-----|-------------------------------------| COURSE CLEARANCE CRITERIA: (Here mention the minimum requirements of attendance, marks in continuous assessment & term end examination, make up exam policy and other details as per the academic regulations & PRC): - Minimum of 75% Attendance is must to take up examination. - Minimum of 40% score is must in internal assessment. - Minimum of 30% in the Final Examination - Minimum of 40% AGGREGATE is must combining continuous assessment and End Term Final Examination. - Make up policy is applicable only as per academic regulation - There will be no make-up for ASSIGNMENT and QUIZ. # **MAKEUP POLICY:** If the student misses an evaluation component, he/she may be granted a make-up. In case of an absence that is foreseen, make-up request should be personally made to the Instructor-in-Charge, well ahead of the scheduled evaluation component. Reasons for unanticipated absence that qualify a student to apply for make-up include medical emergencies or personal exigencies. In such an event, the student should contact the Instructor-in-Charge as soon as practically possible. # CONTACT TIMINGS IN THE CHAMBER FOR ANY DISCUSSIONS: Interested students may contact the Instructor In-charge during the student free Hour and Wednesday, Friday 4:00-4:45 pm to clear doubts. SAMPLE THOUGHT PROVOKING QUESTIONS: (Here type sample typical questions for students 'reference) | SL<br>NO | QUESTION | MARKS | COURSE<br>OUTCOME<br>NO. | BLOOM'S LEVEL | |----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------|---------------| | 1 | Under what condition a pure EV can be chosen as a better option compared to hybrid vehicles considering the impact on climate change? Why? What are the social and environmental impacts of electric vehicles? | 8 + 4 | 1 | Knowledge | | 2 | Draw the different configurations of drivetrains in electric vehicles. Briefly explain each configuration. | 10 | 1 | Comprehension | | 3 | Briefly explain with appropriate expressions, what are the different forces acting on the electric Two-wheeler moving on a flat road with a velocity of V m/sec. (assume necessary data related to vehicle model and road profile) | 10 | 2 | Comprehension | | 4 | Name different types of energy sources used in electric vehicles and explain how to size the power supply for any given direct drive electric two or three wheelers? | 10 | 3 | Comprehension | |---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|---------------| | 5 | Explain how to operate separately excited DC motor in four quadrant mode? Comment on the suitability of this motor in pure EV application? | 10 | 3 | Comprehension | | 6 | Where does the battery charge, and how long does it take? Explain different charging methods. | 10 | 4 | Comprehension | Target set for course Outcome attainment: | Sl.no | C.O. | Course Outcomes | Target set | for | |-------|------|---------------------------------------------------------------|------------|-----| | | No. | | attainment | in | | | | | percentage | | | | | | | | | | | | | | | 01 | Co1 | Describe the importance of Electric Vehicles in recent trends | 50 | | | 02 | Co2 | Discuss the components of Electric Vehicles and Hybrid | 55 | | | | | Electric Vehicles | | | | 03 | Co3 | Summarize the properties of batteries and electric vehicle | 60 | | | | | drive systems | | | | | | | | | | 04 | Co4 | Explain different charging methods of Electric vehicles | 65 | | | | | | 1 | | Signature of the course Instructor This course has been duly verified Approved by the D.A.C. Make Signature of the Chairperson D.A.C. | Course Code:<br>EEE3026 | Course Title: Energy Audit and Demand side Management Type of Course: Discipline Elective & Theory only L- T- P- C 3 0 0 3 | | | | | | | | |----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--| | Version No. Course Prerequisites | 2.0 EEE 2008 - Electrical Power Generation Transmission and Distribution | | | | | | | | | _ | Basic concepts of Power Generation and transmission and tariff schemes. | | | | | | | | | Anti-requisites | NIL | | | | | | | | | Course<br>Description | Energy Audit helps to map the flow of energy (in its various forms) across the value chain, highlighting areas for interventions. It also introduces to the methods of evaluating lifetime of machine based on time value money and demand, economic analysis with repect to demand side management. This course is designed to develop analytical ability on the mechanism of energy audit and the technologies/simulation tools typically employed to undertake an audit exercise, supported by case studies & site visits. | | | | | | | | | Course | The objective of the course is to familiarize the learners with the concepts of Energy Audit | | | | | | | | | Objective | and Demand side Management and attain Entrepreneurial Skills through Problem Solving methodologies. | | | | | | | | | Course | On successful completion of this course the students shall be able to: | | | | | | | | | Outcomes | <ol> <li>Discuss the need of energy audit and energy audit methodology.</li> <li>Explain audit parameters and working principles of measuring instruments used to measure the parameters.</li> <li>Illustrate energy audit of boilers, furnaces, power plant, steam distribution system and compressed air systems.</li> <li>Illustrate energy audit HVAC systems, motors, pumps, blowers and cooling towers.</li> <li>Explain load management techniques, effects of harmonics, electricity tariff, improvement of power factor and losses in transmission.</li> </ol> | | | | | | | | | Course<br>Content: | | | | | | | | | | Module 1 Topics: | Energy Audit :Methodology and Types | | | | | | | | Energy Scenarios: Energy Conservation, Energy Audit, Energy Scenarios, Energy Consumption, Energy Security, Energy Strategy, Codes, standards and Legislation. Definition of Energy Audit, Place of Audit, Energy - Audit Methodology, Financial Analysis, Sensitivity Analysis, Project Financing Options, Energy Monitoring and Training. | Module 2 | Energy Audit: Boilers & | Case Study/ | Data Collection/ Design | 9 Sessions | |-----------|-------------------------|-------------|-------------------------|------------| | Wiodule 2 | Buildings | Assignment | Data Concetton Design | ) Sessions | # Topics: Classification of Boilers, Parts of Boiler, Efficiency of a Boiler, Role of excess Air in Boiler Efficiency, Energy Saving Methods. Energy Audit Applied to Buildings: Energy - Saving Measures in New Buildings, Water Audit, Method of Audit, General Energy – Savings Tips Applicable to New as well as Existing Buildings. | Module 3 | Energy Audit of HVAC | Case study | Data Collection | 11 Sessions | |-----------|----------------------|------------|-----------------|-------------| | Wioduic 5 | Systems | | Data Concetion | TI Sessions | # Topics: Introduction to HVAC, Components of Air – Conditioning System, Types of Air – Conditioning Systems, Human Comfort Zone and Psychrometry, Vapour – Compression Refrigeration Cycle, Energy Use Indices, Energy – Saving Measures in HVAC, Star Rating and Labelling by BEE. Electrical-Load Management: Electrical Basics, Electrical Load Management, Variable- Frequency Drives, Harmonics and its Effects, Electricity Tariff, Power Factor. | Module 4 | Energy Audit: Motors,<br>Lighting system and<br>DSM | Assignment/<br>Presentation | Data Collection / Estimation | 14 Sessions | |----------|-----------------------------------------------------|-----------------------------|------------------------------|-------------| |----------|-----------------------------------------------------|-----------------------------|------------------------------|-------------| **Topics:** Energy Audit of Lighting Systems: Fundamentals of Lighting, Different Lighting Systems, Ballasts, Fixtures (Luminaries), Reflectors, Lenses and Louvres, Lighting Control Systems, Lighting System Audit, Energy Saving Opportunities. Demand side Management: Scope of DSM, Evolution of DSM concept, DSM planning and Implementation, Load management as a DSM strategy, Applications of Load Control, End use energy conservation, Tariff options for DSM. # Targeted Application & Tools that can be used: Application Area is Power System Data collection, Electricity Transmission and Distributed companies, Power Grid and State Electricity Boards Professionally Used Software: Mi Power/ PS CAD #### **Textbooks:** - 1. "Industrial Energy management systems" Array .C, White, Philip S, David R Brown, Hemisphere publishing corporation, New York. - 2. "Handbook on Energy Audit "Sonal Desai McGraw Hill 1st Edition, 2015 # **References** 1. "Energy management "by W.R. Murphy & G. Mckay Butter worth, Heinemann publications. # **Online resources:** - 1. https://www.youtube.com/watch?v=iY2YaIlfEGk - 2. <a href="https://vemu.org/uploads/lecture\_notes/03\_01\_2020\_1480276911.pdf">https://vemu.org/uploads/lecture\_notes/03\_01\_2020\_1480276911.pdf</a> - 3. <a href="https://idoc.pub/documents/anilkumar-km-notes-for-energy-auditing-demand-side-management-unit1-1pdf-klzzqgxxpglg">https://idoc.pub/documents/anilkumar-km-notes-for-energy-auditing-demand-side-management-unit1-1pdf-klzzqgxxpglg</a> - 4. Case study: A Research article onDemand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads - 5. Ebook: https://puniversity.informaticsglobal.com:2069/document/7503335 **Topics relevant to "ENTREPRENEURIAL SKILLS":** The load Management techniques, effects of harmonics, electricity tariff, improvement of power factor and losses in transmission for developing **Entrepreneurial Skills** through **Problem Solving methodologies.** This is attained through assessment component mentioned in course handout. **Topics relevant to HUMAN VALUES and PROFESSIONAL ETHICS:** Energy- Saving measures in New buildings, Audit, Saving Tips. | Catalogue prepared by | Ms. Ramya N | |-------------------------|-----------------------| | Catalogue<br>Updated by | Mr. K Sreekanth Reddy | | Recommended | BoS No: 12th BoS held on 27/7/2021 | |-------------------|-------------------------------------------| | by the Board of | | | <b>Studies on</b> | | | Date of | 16 <sup>th</sup> Academic Council Meeting | | Approval by | held on 23/10/21 | | the Academic | | | Council | | (Established under the Presidency University Act, 2013 of the Karnataka Act 41 of 2013) # A-2[2020] COURSE HAND OUT SCHOOL: Engineering DEPT.: EEE DATE OF ISSUE: 14-08-2021 NAME OF THE PROGRAM : B.TECH (EEE) P.R.C. APPROVAL REF. : PU/AC-16/EEE/2019-23/2021 SEMESTER/YEAR : V/3<sup>rd</sup> year COURSE TITLE & CODE : Energy Audit and Demand side Management & EEE 328 **COURSE CREDIT STRUCTURE : 3-0-0-3** CONTACT HOURS : 3 hrs/week COURSE INSTRUCTOR : COIURSE URL : PROGRAM OUTCOMES: Graduates of the B.Tech. Program in Electrical and Electronics Engineering will be able to: PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. (H) PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.(H) **PO3.** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.(L) **PO5.** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. **PO6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. **PO7**. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.(M) PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. **PO9.** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. (L) **PO11.** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. (L) # **COURSE PREREQUISITES:** Basic concepts of Power Generation and transmission and tariff schemes. #### **COURSE DESCRIPTION:** Energy Audit helps to map the flow of energy in its various forms across the value chain, highlighting areas for interventions. It also introduces to the methods of evaluating lifetime of machine based on time value money and demand, economic analysis with repect to demand side management. This course is designed to develop analytical ability on the mechanism of energy audit and the technologies/simulation tools typically employed to undertake an audit exercise, supported by case studies & site visits. # **COURSE OBJECTIVE:** The objective of the course is to familiarize the learners with the concepts of Energy Audit and Demand side Management and attain **Entrepreneurial Skills** through **Problem Solving** methodologies. **COURSE OUTCOMES:** On successful completion of the course the students shall be able to: - 6. Discuss the need of energy audit and energy audit methodology. - 7. Explain audit parameters and working principles of measuring instruments used to measure the parameters. - 8. Illustrate energy audit of boilers, furnaces, power plant, steam distribution system and compressed air systems. - 9. Illustrate energy audit HVAC systems, motors, pumps, blowers and cooling towers. - 5. Explain load management techniques, effects of harmonics, electricity tariff, improvement of power factor and losses in transmission # MAPPING OF C.O. WITH P.O.: # [H-HIGH, M- MODERATE, L-LOW] | C.O.No. | P.O.01 | P.O.02 | P.O.04 | P.O.08 | P.O.10 | P.O.12 | |---------|--------|--------|--------|--------|--------|--------| | 1 | Н | Н | | | | L | | 2 | Н | Н | L | | | L | | 3 | M | M | | M | L | 0 | | 4 | M | M | L | M | L | L | |---|---|---|---|---|---|---| | | | | | | | | # **COURSE CONTENT (SYLLABUS):** #### MODULE: 1: ENERGY AUDIT: METHODOLOGY AND TYPES Energy Scenarios: Energy Conservation, Energy Audit, Energy Scenarios, Energy Consumption, Energy Security, Energy Strategy, Codes, standards and Legislation. Definition of Energy Audit, Place of Audit, Energy – Audit Methodology, Financial Analysis, Sensitivity Analysis, Project Financing Options, Energy Monitoring and Training [11-Hrs] [Blooms 'level selected: Comprehension] MODULE: 2: ENERGY AUDIT: BOILERS & BUILDINGS Classification of Boilers, Parts of Boiler, Efficiency of a Boiler, Role of excess Air in Boiler Efficiency, Energy Saving Methods. Energy Audit Applied to Buildings: Energy – Saving Measures in New Buildings, Water Audit, Method of Audit, and General Energy – Savings Tips Applicable to New as well as Existing Buildings. [9-Hrs] [Blooms 'level selected: Application] #### **MODULE: 3: ENERGY AUDIT OF HVAC SYSTEMS** Introduction to HVAC, Components of Air – Conditioning System, Types of Air – Conditioning Systems, Human Comfort Zone and Psychrometry, Vapour – Compression Refrigeration Cycle, Energy Use Indices, Energy – Saving Measures in HVAC, Star Rating and Labelling by BEE. Electrical-Load Management: Electrical Basics, Electrical Load Management, Variable- Frequency Drives, Harmonics and its Effects, Electricity Tariff, Power Factor. [11 Hrs] [Blooms 'level selected: Application] # MODULE: 4: ENERGY AUDIT: MOTORS, LIGHTING SYSTEM AND DSM Energy Audit of Lighting Systems: Fundamentals of Lighting, Different Lighting Systems, Ballasts, Fixtures (Luminaries), Reflectors, Lenses and Louvres, Lighting Control Systems, Lighting System Audit, Energy Saving Opportunities. Demand side Management: Scope of DSM, Evolution of DSM concept, DSM planning and Implementation, Load management as a DSM strategy, Applications of Load Control, End use energy conservation, Tariff options for DSM [14 -Hrs] [Blooms 'level selected: Comprehension] # **DELIVERY PROCEDURE (PEDAGOGY):** #### **Topics for Self-Learning:** - 4. Energy Use Indices - 5. DSM concept. # **Experiential Learning Topics:** 3. Energy audit of university blocks #### Note: 3. All the Topics will be covered through **Lecture Method.** ### **E-materials:** - 6. <a href="https://www.youtube.com/watch?v=iY2YaIIfEGk">https://www.youtube.com/watch?v=iY2YaIIfEGk</a> - 7. https://vemu.org/uploads/lecture\_notes/03\_01\_2020\_1480276911.pdf - 8. <a href="https://idoc.pub/documents/anilkumar-km-notes-for-energy-auditing-demand-side-management-unit1-1pdf-klzzqgxxpglg">https://idoc.pub/documents/anilkumar-km-notes-for-energy-auditing-demand-side-management-unit1-1pdf-klzzqgxxpglg</a> - 9. Case study: A Research article onDemand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads - 10. Ebook: <a href="https://puniversity.informaticsglobal.com:2069/document/7503335">https://puniversity.informaticsglobal.com:2069/document/7503335</a> - 11. https://presiuniv.knimbus.com/user#/home ### **REFERENCE MATERIALS:** #### **Textbooks:** - 1. "Handbook on Energy Audit "Sonal Desai McGraw Hill 1st Edition, 2015 - 2. "Industrial Energy management systems" Array .C, White, Philip S, David R Brown, Hemisphere publishing corporation, New York. ### **Reference book(s):** "Energy management "by W.R. Murphy & G. Mckay Butter worth, Heinemann publications # **GUIDELINES TO STUDENTS:** (Here mention a few tips to study this course effectively) - The students are advised to be very much regular to the online classes and sincerely attempt the learnings listed in the Pedagogical section. - The students are advised to take down the notes legibly which serves as a firsthand information to study and revise lecture topics on day to day basis. - The students are advised to visit the Edhitch portal and Microsoft teams on a regular basis to study the supporting materials shared by the course instructors. - The students are advised to use the journals, technical magazines and other relevant materials. - The students are advised to watch the video lectures available online to understand and review the concepts delivered in the class as well as problems assigned for self-learning topics. COURSE SCHEDULE: (This is a macro level planning. Mention the unit wise expected starting and ending dates along with the tests/assignments/quiz and any other activities) [allot about 75% for delivary,about10 to 12% for Evaluation Discussion, about 10 to 15% on integrating the learning Modules within the course and to the program] | Sl. No. | ACTIVITY | STARTING<br>DATE | CONCLUDING DATE | TOTAL NUMBER<br>OF PERIODS | |---------|------------------------------------------|------------------|-----------------|----------------------------| | 01 | Program Integration | | | 2 | | | Over View of the course | | | | | 02 | Module: 01 Content | | | 11 | | 03 | Module:2 Course Integration & content | | | 9 | | 04 | Mid Term <b>Test</b> | | | | | 05 | Test Paper Discussion | | | 1 | | 06 | Module:03 Course Integration and content | | | 11 | | 07 | Module:04 Course Integration and content | | | 14 | | 08 | Case Study | | | NA | | 09 | Program integration | | | 01 | #### SCHEDULE OF INSTRUCTION: **MODULE: 1: ENERGY AUDIT: METHODOLOGY AND TYPES** | Sl.<br>no | Session no | Lesson Title | Topics | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | | | |-----------|-----------------------|------------------------|--------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------|-----------|--|--| | 1 | S1 | Program<br>Integration | Introduction to course | | | | | | | 2 | S2 | Course<br>Integration | Energy Scenarios: Energy<br>Conservation | | | | | | | 3 | \$3 | | Energy Audit | CO. 1 | Lecture<br>Mode/PP<br>T | T1 | | | | 4 | S4 | | Energy Scenarios, Energy<br>Consumption, Energy<br>Security | CO. 1 | Lecture<br>mode,<br>white<br>board | Т1 | | | | 5 | S5 | | Energy Strategy, | CO. 1 | Lecture<br>Mode | Т1 | | | | 6 | S6 | Energy Audit | Codes, standards and<br>Legislation | CO. 1 | Lecture<br>Mode | T1 | | | | 7 | S7 | | Definition of Energy<br>Audit, Place of Audit,<br>Energy – | CO. 1 | Lecture<br>Mode/PP<br>T | Т1 | | | | 8 | S8 | | Audit Methodology,<br>Financial Analysis, | CO. 1 | Lecture<br>Mode | Т1 | | | | 9 | S9 | | Sensitivity Analysis, Project Financing Options, Sensitivity Analysis, Project Financing Options | CO. 1 | Video clip | T1 | | | | 10 | S10 | | Energy Monitoring and<br>Training | CO. 1 | Lecture<br>mode/PP<br>T | T1 | | | | 11 | S11 | | Energy Monitoring and<br>Training | CO. 1 | Lecture<br>mode/PP<br>T | T1 | | | | | Module 1 is completed | | | | | | | | MODULE: 2: ENERGY AUDIT: BOILERS & BUILDINGS | Sl.<br>no | Session no | Lesson Title | Topics | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |-----------|------------|-----------------------|-------------------------------------------------------------------------------------|-----------------------------|-------------------------------|-----------| | 1 | S12 | Course<br>Integration | Classification of Boilers,<br>Parts of Boiler, | | | | | 2 | S13 | | Efficiency of a Boiler, | CO. 2 | Lecture<br>Mode | T1 | | 3 | S14 | | Role of excess Air in<br>Boiler Efficiency | CO. 2 | Lecture<br>Mode/Video<br>clip | Т1 | | 4 | S15 | | Energy Saving Methods. Energy Audit Applied to Buildings: | CO. 2 | Lecture<br>Mode/Video<br>clip | T1 | | 5 | S16 | BOILERS & BUILDINGS | Energy – Saving Measures in New Buildings, | CO. 2 | Lecture<br>Mode | T1 | | 6 | S17 | | Water Audit, Method of Audit. | CO. 2 | Lecture<br>Mode | T1 | | 7 | S18 | | General Energy – Savings<br>Tips Applicable to New as<br>well as Existing Buildings | CO. 2 | Lecture<br>Mode | Т1 | | 8 | S19 | | General Energy – Savings<br>Tips Applicable to New as<br>well as Existing Buildings | CO. 2 | Lecture<br>Mode | Т1 | | 9 | S20 | | General Energy – Savings<br>Tips Applicable to New as<br>well as Existing Buildings | CO. 2 | Lecture<br>Mode | T1 | | | l | 1 | Module 2 is completed | l | | I | # **MODULE: 3: ENERGY AUDIT OF HVAC SYSTEMS** | Sl.<br>no | Session no | Lesson Title | Topics | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |-----------|------------|-----------------------|----------------------|-----------------------------|------------------|-----------| | 1 | S21 | Course<br>Integration | Introduction to HVAC | CO. 3 | Lecture<br>Mode | T1 | | 2 | S22 | Components of Air – Conditioning System | CO. 3 | Lecture<br>Mode | T1 | | |-----------------------|-----|-------------------------------------------------------------------|-------|-----------------|----|--| | 3 | S23 | Types of Air – Conditioning Systems | CO. 3 | Lecture<br>Mode | Т1 | | | 4 | S24 | Human Comfort Zone and Psychrometry, Vapour – Compression | CO. 3 | Lecture<br>Mode | T1 | | | 5 | S25 | Human Comfort Zone and Psychrometry, Vapour – Compression | CO. 3 | Lecture<br>Mode | T1 | | | 6 | S26 | Refrigeration Cycle,<br>Energy Use Indices, | CO. 3 | Lecture<br>Mode | T1 | | | 7 | S27 | Energy – Saving Measures in HVAC | CO. 3 | Lecture<br>Mode | T1 | | | 8 | S28 | Star Rating and Labelling by BEE | CO. 3 | Lecture<br>Mode | T1 | | | 9 | S29 | Electrical-Load Management: Electrical Basics, | CO. 3 | Lecture<br>Mode | T1 | | | 10 | S30 | Variable- Frequency Drives | | | | | | 11 | S31 | Harmonics and its Effects,<br>Electricity Tariff, Power<br>Factor | CO. 3 | Lecture<br>Mode | T1 | | | Madala 2 in completed | | | | | | | Module 3 is completed # MODULE: 4: ENERGY AUDIT: MOTORS, LIGHTING SYSTEM AND DSM | Sl.<br>no | Session no | Lesson Title | Topics | | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |-----------|------------|-----------------------|------------------------------------------|-----------------------------------|-----------------------------|------------------|--------------| | 1 | S32 | Course<br>Integration | Fundamentals<br>Lighting, | of | CO .4 | Lecture<br>Mode | Texas papers | | 2 | S33 | | Different<br>Systems,<br>Fixtures (Lumin | Lighting<br>Ballasts,<br>naries), | CO .4 | Lecture<br>Mode | Texas papers | | 3 | 34 | Reflectors, Lenses and Louvres, | CO .4 | Lecture<br>Mode | Texas papers | |----|-----|----------------------------------------------------------------|-------------|-----------------|--------------| | 4 | S35 | Lighting Control Systems,<br>Lighting System Audit, | CO .4 | Lecture<br>Mode | Texas papers | | 5 | S36 | Energy Saving Opportunities. | CO .4 | Lecture<br>Mode | Texas papers | | 6 | S37 | Demand side Management: Scope of DSM, Evolution of DSM concept | CO .5 | Lecture<br>Mode | Texas papers | | 7 | S38 | DSM planning and Implementation | CO .5 | Lecture<br>Mode | T1 | | 8 | S39 | Load management as a DSM strategy, | CO .5 | Lecture<br>Mode | T1 | | 9 | S40 | Load management as a DSM strategy | CO .5 | Lecture<br>Mode | T1 | | 10 | S41 | Applications of Load Control, | CO .5 | Lecture<br>Mode | T1 | | 11 | S42 | End use energy conservation, | CO .5 | Lecture<br>Mode | T1 | | 12 | S43 | Tariff options for DSM. | CO .5 | Lecture<br>Mode | T1 | | 13 | S44 | Tariff options for DSM. | CO .5 | Lecture<br>Mode | T1 | | 14 | S45 | Program integration | CO 1 to | | | | | | Module 4 is | s completed | 1 | | **Topics relevant to "ENTREPRENEURIAL SKILLS":** The load management techniques, effects of harmonics, electricity tariff, improvement of power factor and losses in transmission for developing **Entrepreneurial Skills** through **Problem Solving Methodologies**. This is attained through the **Assignment** as mentioned in the assessment component. #### **ASSESSMENT SCHEDULE:** | S.<br>No. | Assessment Type | Contents | CO | Duration | Mark<br>s | Weightag<br>e | Venue,<br>DATE | |-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------|---------------|-----------|---------------|----------------| | 110. | | | Number | In Hours | 3 | | &TIME | | 1 | Assignment Problem Solving | Topic can be<br>selected from any<br>Module-<br>I/II/III/IV | CO1-CO4 | - | 20 | 10% | | | 2 | Test-1 | M1 | CO1 | 60<br>Minutes | 30 | 15% | | | 3 | Test-2 | M2 | CO2 | 60<br>Minutes | 30 | 15% | | | 4 | Assignment as self-<br>Learning topics Review of digital/e-<br>resources from Pres. Univ.link given in the references section (Mandatory to submit the screenshots of accessing digital Resource. Otherwise it will not be evaluated | Mentioned. | CO2 | -NA- | 20 | 10% | | | 1. | End Term | All modules | CO 1,2,3,4 | 3 hours | 100 | 50% | | COURSE CLEARANCE CRITERIA: (Here mention the minimum requirements of attendance, marks in continuous assessment & term end examination, make up exam policy and other details as per the academic regulations & PRC): - i. Minimum of 75% Attendance is must to take up examination. - ii. Minimum of 40% score is must in internal assessment. - iii. Minimum of 30% in the Final Examination. ## **MAKEUP POLICY:** If the student misses an evaluation component, he/she may be granted a make-up. In case of an absence that is foreseen, make-up request should be personally made to the Instructor-in-Charge, well ahead of the scheduled evaluation component. Reasons for unanticipated absence that qualify a student to apply for make-up include medical emergencies or personal exigencies. In such an event, the student should contact the Instructor-in-Charge as soon as practically possible. # CONTACT TIMINGS IN THE CHAMBER FOR ANY DISCUSSIONS: Interested students may contact the Instructor In-charge during the student free Hour to clear doubts. SAMPLE THOUGHT PROVOKING QUESTIONS: (Here type sample typical questions for students 'reference) | SL | QUESTION | MARKS | COURSE | BLOOM'S LEVEL | |----|----------------------------------------------------------------------------------|-------|---------|---------------| | NO | | | OUTCOME | | | | | | NO. | | | 1 | Write down the steps involved in 'Energy management Strategy'? | 8 | 1 | Knowledge | | 2 | Demonstrate the typical energy audit reporting format | 10 | 3 | Application | | 3 | Explain the energy audit and its analysis for Boiler and it's allied. | 10 | 2 | Comprehension | | 4 | Explain how matching energy usage to requirement can enhance energy Efficiency. | 10 | 4 | Comprehension | | Course Code: | Course Title: Electr | | | I T D C | | | | | | |--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|--------|--------|-------|----------|--| | EEE332 | Type of Course: Dis | eory only | e | L-T-P-C | 3 | 0 | 0 | 3 | | | Version No. | 1.0 | | | | | | | <u> </u> | | | Course Pre-<br>requisites | Power Electronics & | Drives and Fu | ndamentals of l | Electric Vehicles | | | | | | | Anti-requisites | NIL | | | | | | | | | | Course Course | vehicles. Also, it provapplication of electranalytical in nature a develops the critical to | This course introduces the concepts, principles, analysis and design of hybrid and electric vehicles. Also, it provides the ability to develop the electric propulsion unit and its control for application of electric vehicles through assignments. The course is both conceptual and analytical in nature and needs fair knowledge of mathematical and computing. The course develops the critical thinking and analytical skills. The objective of the course is to familiarize the learners with the concepts of Electric Vehicles | | | | | | | | | <b>Objective</b> | 7 | and attain Entrepreneurial Skills through Problem Solving methodologies. | | | | | | | | | Course Out<br>Comes | <ol> <li>On successful completion of the course the students shall be able to: <ol> <li>Review the working and design of Electric Vehicle drive trains.</li> <li>Demonstrate different power converter topology used for electric vehicle application.</li> <li>Illustrate the electric propulsion unit and its control for application of electric vehicles.</li> </ol> </li> <li>Employ converters for battery charging and explain transformer less topology.</li> </ol> | | | | | | | | | | Course Content | | | | | | | | | | | Module 1 | Drive Train<br>Design | Assignment | Computation | and Data Analysis | | 12 | Sessi | ions | | | power rating of tr<br>Parallel Hybrid a<br>power capacity, d | ectric Drive Train Destaction motor, power rate Electric Drive Train Electric motor Energy storage for | ting of engine/g<br>Design: Control | generator, desig<br>strategies of pa<br>transmission de | n of PPS<br>arallel hybrid drive tra<br>esign, energy storage | in, de | sign ( | | gine | | | Module 2 | EV and HEV: | Quiz | Data collection | on and Analysis | | 12 | Sessi | ions | | | Modelling of Bat | for EV and HEV: Itery, Fuel Cell basic prompted MFC, Supercapacitors. | | - | | | | | | | | Module 3 | Electric<br>Propulsion<br>Systems | Case study | | nd data analysis | | | Sessi | | | | | ion: EV consideration ives, Switch Reluctance | | _ | | | | | | | | Module 4 | Power Electronic<br>Converter for<br>Battery Charging: | Assignmen t | Data collecti | on | | 11 | Sessi | ions | | | | c Converter for Batt | • 0 | ~ ~ | thods for battery, Te | | | | | | Power Electronic Converter for Battery Charging: Charging methods for battery, Termination methods, charging from grid, The Z-converter, Isolated bidirectional DC-DC converter, Design of Z-converter for battery charging, High-frequency transformer based isolated charger topology, Transformer less topology ## **Targeted Application & Tools that can be used:** Application: Automotive industry. Software tools: Matlab-Simulink ### **Text Books** - 1. Mehrdad Ehsani, YiminGao, sebastien E. Gay and Ali Emadi, —Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2009. - 2. Iqbal Husain, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2011, 2<sup>nd</sup> edition. ### **References:** - 1. James Larminie and John Loury, —Electric Vehicle Technology-Explainedl, John Wiley & Sons Ltd., 2003, Second Edition. - 2. C.C. Chan and K.T. Chanu Modern Electric Vehicle Technology, OXFORD University, 2011 - 3. Sheldon S. Williamson,- Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles, Springer, 2013 - 4. Chris Mi, M. A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2011, Second Edition #### **Online resources:** - 1. <a href="https://nptel.ac.in/courses/108/102/108102121/">https://nptel.ac.in/courses/108/102/108102121/</a> - 2. <a href="https://www.coursera.org/learn/electric-vehicles-mobility">https://www.coursera.org/learn/electric-vehicles-mobility</a> - 3. Video: <a href="https://www.youtube.com/watch?v=GHGXy\_sjbgQ">https://www.youtube.com/watch?v=GHGXy\_sjbgQ</a> - 4. Text book of Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, Infrastructure and the Market, Gianfranco Pistoia, 1st ed. Amsterdam: Elsevier. 2010 https://puniversity.informaticsglobal.com - 5. Case Study: <a href="https://www.simpli.com/answers">https://www.upgrad.com/ev\_technology/iit-delhi</a>, **Topics relevant to "ENTREPRENEURIAL SKILLS":** Isolated bidirectional DC-DC converter, Design of Z-converter for battery charging, High-frequency transformer based isolated charger topology for developing **Entrepreneurial Skills** through **Problem Solving methodologies.** This is attained through assessment component mentioned in course handout. | Catalogue<br>prepared by | Ms. Ragasudha C P | |---------------------------------------------------|--------------------------------------------------------------| | Recommended<br>by the Board of<br>Studies on | BoS No: 11 <sup>th</sup> BoS held on 05/09/2020 | | Date of<br>Approval by<br>the Academic<br>Council | 14 <sup>th</sup> Academic Council meeting held on 24/12/2020 | (Established under the Presidency University Act, 2013 of the Karnataka Act 41 of 2013) ### A-2[2020] COURSE HAND OUT SCHOOL: Engineering DEPT.: EEE DATE OF ISSUE: 22/01/2021 NAME OF THE PROGRAM : B.TECH (EEE) P.R.C. APPROVAL REF. : PU/AC-14/07/12\_2020 SEMESTER/YEAR : VI/ III COURSE TITLE & CODE : Electric Vehicles II & EEE 332 COURSE CREDIT STRUCTURE : 3-0-0-3 CONTACT HOURS : 3 hrs/week COURSE INSTRUCTOR : COIURSE URL : PROGRAM OUTCOMES: [LIST ALL AND CIRCLE THE RELEVANT SELECTED OUTCOMES] Graduates of the B.Tech. Program in Electrical and Electronics Engineering will be able to: PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. (H) PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.(H) PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.(M) PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.(L) PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.(L) PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable developments. PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.(L) **PO11.** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. **PO12.** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. ## **COURSE PREREQUISITES:** - [1] Power Electronics & Drives - [2] Fundamentals of Electric Vehicles ### **COURSE DESCRIPTION:** This course introduces the concepts, principles, analysis and design of hybrid and electric vehicles. Also, it provides the ability to develop the electric propulsion unit and its control for application of electric vehicles through assignments. The course is both conceptual and analytical in nature and needs fair knowledge of mathematical and computing. The course develops the critical thinking and analytical skills. # **COURSE OBJECTIVE:** The objective of the course is to familiarize the learners with the concepts of Electric Vehicles and attain **Entrepreneurial**Skills through **Problem Solving** methodologies. **COURSE OUTCOMES:** On successful completion of the course the students shall be able to: - 5. Review the working and design of Electric Vehicle drive trains. - 6. Demonstrate different power converter topology used for electric vehicle application. - 7. Illustrate the electric propulsion unit and its control for application of electric vehicles. - 8. Employ converters for battery charging and explain transformer less topology ### MAPPING OF C.O. WITH P.O.: ## [H-HIGH, M- MODERATE, L-LOW] | C.O.N0. | P.O.01 | P.O.02 | P.O.0<br>3 | P.O.04 | P.O.05 | P.O.06 | P.O.07 | P.O.08 | P.O.09 | P.O.10 | |---------|--------|--------|------------|--------|--------|--------|--------|--------|--------|--------| | 1 | Н | Н | M | | | | | | 0 | L | | 2 | Н | Н | M | | | | | L | |---|---|---|---|---|---|--|--|---| | 3 | Н | Н | M | L | | | | L | | 4 | Н | Н | M | L | L | | | L | #### **COURSE CONTENT (SYLLABUS):** #### **MODULE: 1: DRIVE TRAIN DESIGN** **Series Hybrid Electric Drive Train Design:** Operating patterns, control strategies, Sizing of major components, power rating of traction motor, power rating of engine/generator, design of PPS **Parallel Hybrid Electric Drive Train Design:** Control strategies of parallel hybrid drive train, design of engine power capacity, design of electric motor drive capacity, transmission design, energy storage design. [12-Hrs] [Blooms 'level selected: Application] #### **MODULE: 2: ENERGY STORAGE FOR EV AND HEVS** **Energy storage for EV and HEV:** Energy storage requirements, Battery parameters, Types of Batteries, Modelling of Battery, Fuel Cell basic principle and operation, Types of Fuel Cells, PEMFC and its operation, Modelling of PEMFC, Supercapacitors.. [12-Hrs] [Blooms 'level selected: Application] #### MODULE: 3: ELECTRIC PROPULSION SYSTEMS Electric Propulsion: EV consideration, DC motor drives and speed control, Induction motor drives, Permanent Magnet Motor Drives, Switch Reluctance Motor Drive for Electric Vehicles, Configuration and control of Drives. [10-Hrs] [Blooms 'level selected: Application] #### **MODULE: 4: POWER CONVERTERS FOR BATTERY CHARGING** **Power Electronic Converter for Battery Charging:** Charging methods for battery, Termination methods, charging from grid, The Z-converter, Isolated bidirectional DC-DC converter, Design of Z- converter for battery charging, High-frequency transformer based isolated charger topology, Transformer less topology [11-Hrs] [Blooms 'level selected: Application] ## **DELIVERY PROCEDURE (PEDAGOGY):** # **Topics for Self-Learning:** - 6. Battery management system. - 7. Selection of wires for EVs. - 8. Different types of controllers that are used in EVs. ## **Experiential Learning Topics:** 4. Power converter based Charging method using MATLAB Simulink ## Note: - 4. All the Topics will be covered through **online Lecture Method in Microsoft teams.** - **5.** E-materials available at the website of NPTEL- http://nptel.ac.in/ #### **REFERENCE MATERIALS:** **Textbooks:** T1: M. Ehsani, Y. Gao, S. Gay and Ali Emadi, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, CRC Press, 2005 T2: Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003. ### **Reference book(s):** - 5. James Larminie and John Loury, —Electric Vehicle Technology-Explainedl, John Wiley & Sons Ltd., 2003, Second Edition. - 6. C.C. Chan and K.T. Chanu Modern Electric Vehicle Technology, OXFORD University, 2011 - 7. Sheldon S. Williamson,- Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles, Springer,2013 - 8. Chris Mi, M. A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2011, Second Edition # Online learning resources:: W1.https://nptel.ac.in/courses/108/102/108102121/ W2.https://nptel.ac.in/courses/108/106/108106170/ W3. IEEE Explore - School of Engineering W4.https://www.coursera.org/learn/electric-vehicles-mobility W6.Video: <a href="https://www.youtube.com/watch?v=GHGXy">https://www.youtube.com/watch?v=GHGXy</a> sjbgQ W7. Text book of Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, Infrastructure and the Market, Gianfranco Pistoia, 1st ed. Amsterdam: Elsevier. 2010 <a href="https://presiuniv.knimbus.com/user#/home">https://presiuniv.knimbus.com/user#/home</a> ## **Case Study:** - 1. <a href="https://www.simpli.com/answers">https://www.simpli.com/answers</a> - 2. <a href="https://www.upgrad.com/ev\_technology/iit-delhi">https://www.upgrad.com/ev\_technology/iit-delhi</a> #### Other resources: Reputed journal papers are to be referred. ## **GUIDELINES TO STUDENTS:** (Here mention a few tips to study this course effectively) - The students are advised to be very much regular to the online classes and sincerely attempt the learnings listed in the Pedagogical section. - The students are advised to take down the notes legibly which serves as a firsthand information to study and revise lecture topics on day to day basis. - The students are advised to visit the Edhitch portal and Microsoft teams on a regular basis to study the supporting materials shared by the course instructors. - The students are advised to use the journals, technical magazines and other relevant materials. - The students are advised to watch the video lectures available online to understand and review the concepts delivered in the class as well as problems assigned for self-learning topics. COURSE SCHEDULE: (This is a macro level planning. Mention the unit wise expected starting and ending dates along with the tests/assignments/quiz and any other activities) [allot about 75% for delivary,about10 to 12% for Evaluation Discussion, about 10 to 15% on integrating the learning Modules within the course and to the program] | Sl. No. | ACTIVITY | STARTING<br>DATE | CONCLUDING<br>DATE | TOTAL NUMBER<br>OF PERIODS | |---------|-------------------------|------------------|--------------------|----------------------------| | 01 | Over View of the course | | | 02 | | 02 | Module: 01 | | | 09 | | 03 | Course Integration of Module:2 | 01 | |----|--------------------------------|----| | 04 | Module: 02 | 09 | | 05 | Quiz 1/ Assignment 1/self LT | 01 | | 06 | Test-1 | NA | | 07 | Test-1 Paper Discussion | 01 | | 08 | Course Integration of Module:3 | 01 | | 09 | Module:03 | 10 | | 10 | Test-II | NA | | 11 | Discussion of Test-2 paper | 01 | | 12 | Case Study / Mini Project | NA | | 13 | Module 4 | 13 | | 14 | Course Integration of Module:4 | 01 | | 15 | Program integration | 01 | # SCHEDULE OF INSTRUCTION: # **MODULE: 1:** | Sl.<br>no | Session no | Lesson Title | Topics | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |-----------|------------|-------------------------------------------------|----------------------------------------|-----------------------------|----------------------|-----------| | 1 | S-1 | Program<br>Integration | | | | | | 2 | S-2 | Course<br>Integration | Introduction to course | | | | | 3 | S-3 | Series Hybrid<br>Electric Drive<br>Train Design | Operating patterns, control strategies | CO. 1 | PPT/Digital<br>Board | T1:Ch.1 | | 4 | S-4 | | Operating patterns, control strategies | CO. 1 | PPT/Digital<br>Board | T1:Ch.1 | | 5 | S-5 | Series Hybrid<br>Electric Drive<br>Train Design | Sizing of major components, power rating of traction motor | CO. 1 | PPT/Digital<br>Board | T1:Ch.1 | | | | |----|-----------------------|------------------------------------------------------|-----------------------------------------------------------------------------------|-------|----------------------|---------|--|--|--| | 6 | S-6 | _ | power rating of<br>engine/generator, design<br>of PPS | CO. 1 | PPT/Digital<br>Board | T1:Ch.1 | | | | | 7 | S-7 | Parallel<br>Hybrid<br>Electric Drive<br>Train Design | Control strategies of parallel hybrid drive train | CO. 1 | PPT/Digital<br>Board | T1:Ch.1 | | | | | 8 | S-8 | Parallel<br>Hybrid<br>Electric Drive<br>Train Design | Control strategies of parallel hybrid drive train | CO. 1 | PPT/Digital<br>Board | T1:Ch.1 | | | | | 9 | S-9 | Parallel<br>Hybrid<br>Electric Drive<br>Train Design | design of engine power<br>capacity, design of<br>electric motor drive<br>capacity | CO. 1 | PPT/Digital<br>Board | T1:Ch.4 | | | | | 10 | S-10 | | design of engine power<br>capacity, design of<br>electric motor drive<br>capacity | CO. 1 | PPT/Digital<br>Board | T1:Ch.4 | | | | | 11 | S-11 | | transmission design,<br>energy storage design. | CO. 1 | PPT/Digital<br>Board | T1:Ch.4 | | | | | 12 | S-12 | | transmission design,<br>energy storage design. | CO. 1 | PPT/Digital<br>Board | T1:Ch.4 | | | | | | Module 1 is completed | | | | | | | | | # **MODULE: 2:** | Sl.<br>no | Session no | Lesson Title | Topics | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |-----------|------------|-------------------------------------|-----------------------------|-----------------------------|-----------------------|-----------| | 1 | S-1 | Course<br>Integration | | | | | | 2 | S-2 | Energy storage<br>for EV and<br>HEV | Energy storage requirements | CO. 3 | PPT/Digit<br>al Board | | | 3 | S-3 | Energy storage<br>for EV and<br>HEV | Battery parameters | CO. 3 | PPT/Digit<br>al Board | Text Book | | 4 | S-4 | Energy storage<br>for EV and<br>HEV | Types of Batteries | CO. 3 | PPT/Digit<br>al Board | | |----|------|-------------------------------------|--------------------------------------------------------------------|-------|-----------------------|-----------| | 5 | S-5 | Energy storage<br>for EV and<br>HEV | Super Capacitors | CO. 3 | PPT/Digit<br>al Board | | | 6 | S-6 | | Modelling of Battery | CO. 3 | PPT/Digit<br>al Board | T1.Ch.6 | | 7 | S-7 | Energy storage<br>for EV and<br>HEV | Fuel Cell basic principle<br>and operation, Types of<br>Fuel Cells | CO. 3 | PPT/Digit<br>al Board | | | 8 | S-8 | | PEMFC and its operation | CO. 3 | PPT/Digit<br>al Board | T1.Ch.6.1 | | 9 | S-9 | Energy<br>storage for | Modelling of PEMFC,<br>Supercapacitors. | CO. 3 | PPT/Digit<br>al Board | T1.Ch.6.1 | | 10 | S-10 | EV and HEV | PEMFC and its operation,<br>Modelling of PEMFC | CO. 3 | PPT/Digit<br>al Board | T1.Ch.6.2 | # **MODULE: 3:** | Sl.<br>no | Session no | Lesson Title | Topics | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |-----------|------------|------------------------|--------------------------------------------------------|-----------------------------|-----------------------|------------------| | 1 | S-1 | Course<br>Integration | | | | | | 2 | S-2 | Electric<br>Propulsion | Introduction | CO. 2 | PPT/Digit<br>al Board | Technical papers | | 3 | S-3 | | EV consideration, DC motor drives and speed control | CO. 2 | PPT/Digit<br>al Board | Technical papers | | 4 | S-4 | | EV consideration, DC motor drives and speed control | | PPT/Digit<br>al Board | | | 5 | S-5 | | Induction motor drives | CO. 2 | PPT/Digit<br>al Board | Technical papers | | 6 | S-6 | | Permanent Magnet Motor<br>Drives | CO. 2 | PPT/Digit<br>al Board | Technical papers | | 7 | S-7 | | Switch Reluctance Motor<br>Drive for Electric Vehicles | CO. 2 | PPT/Digit<br>al Board | Technical papers | | 8 | S-8 | | Configuration and control of Drives. | CO. 2 | PPT/Digit<br>al Board | Technical papers | | 9 | S-9 | | Problem Solving | CO. 2 | PPT/Digit<br>al Board | Technical papers | | 10 | S-10 | | Problem Solving | CO. 2 | PPT/Digit<br>al Board | Technical papers | | | | | Module 3 is completed | | | | # **MODULE: 4:** | Sl. | Session no | Lesson Title | Topics | Course | Delivery | Referenc | |-----|------------|--------------|--------|---------|----------|------------| | N | | | | Outcome | Mode | e | | | | | | Number | | | | | | | | | | WILL CY II | | Sl.<br>no | Session no | Lesson Title | Topics | Course<br>Outcome<br>Number | Delivery<br>Mode | Referenc<br>e | |-----------|------------|----------------------------------|------------------------------------------------------------------|-----------------------------|----------------------|------------------| | 1 | S-1 | Course<br>Integration | | | | | | 2 | S-2 | Power<br>Electronic<br>Converter | Charging methods and characteristics | CO .4 | PPT/Digital<br>Board | | | 3 | S-3 | Power<br>Electronic<br>Converter | Charging from Grid | CO .4 | PPT/Digital<br>Board | | | 4 | S-4 | Power<br>Electronic<br>Converter | isolated bidirectional DC-DC converter | CO .4 | PPT/Digital<br>Board | Technical papers | | 5 | S-5 | Power<br>Electronic<br>Converter | isolated bidirectional DC-DC converter | CO .4 | PPT/Digital<br>Board | Technical papers | | 6 | S-6 | Power<br>Electronic<br>Converter | high frequency<br>transformer based<br>isolated charger topology | CO .4 | PPT/Digital<br>Board | Technical papers | | 7 | S-7 | Battery<br>Charging<br>method | high frequency<br>transformer based<br>isolated charger topology | CO .4 | PPT/Digital<br>Board | Technical papers | | 8 | S-8 | Battery<br>Charging<br>method | Energy management strategies | CO .4 | PPT/Digital<br>Board | Technical papers | | 9 | S-9 | Battery<br>Charging<br>method | Overview of different<br>Charging systems | CO .4 | PPT/Digital<br>Board | Technical papers | | 10 | S-10 | Battery<br>Charging<br>method | Overview of different<br>Charging systems | CO .4 | PPT/Digital<br>Board | Technical papers | | 11 | S-11 | Battery<br>Charging<br>method | Overview of different<br>Charging systems | CO .4 | PPT/Digital<br>Board | Technical papers | | 12 | S-12 | | Program Integration | CO .1-4 | PPT/Digital<br>Board | | Module 4 is completed **Topics relevant to "ENTREPRENEURIAL SKILLS":** Isolated bidirectional DC-DC converter, Design of Z- converter for battery charging, High-frequency transformer based isolated charger topology for developing **Entrepreneurial Skills** through **Problem Solving methodologies**. This is attained through the **Assignment** as mentioned in the assessment component. #### **ASSESSMENT SCHEDULE:** | Sl.no | Assessment type[Include here assessment method for self- learning component also] | contents | Course<br>outcome<br>Number | Duration In Hours | marks | weightage | Venue,<br>DATE<br>&TIME | |-------|-----------------------------------------------------------------------------------|------------------|-----------------------------|-------------------|-------|-----------|-------------------------| | 1 | Assignment Problem Solving | Module-4 | CO 2 and<br>CO 4 | - | 20 | 10% | | | 2 | Test 1 | Module-1 | CO1 | 1 hr | 30 | 15% | | | 3 | Test 2 | Module-2 | CO2 | 1 hr | 30 | 15% | | | 4 | Quiz/Assignment<br>as self Learning<br>topics | Module-3 | CO3 | - | 20 | 10% | | | 5 | End Term Final<br>Examination | Module-1,2,3 & 4 | CO1-CO4 | 3 hrs | 100 | 50% | | COURSE CLEARANCE CRITERIA: (Here mention the minimum requirements of attendance, marks in continuous assessment & term end examination, make up exam policy and other details as per the academic regulations & PRC): - Minimum of 75% Attendance is must to take up examination. - Minimum of 40% score is must in internal assessment. - Minimum of 30% in the Final Examination. - Make up policy is applicable only as per academic regulation - There will be no make-up for ASSIGNMENT and QUIZ. ### **MAKEUP POLICY:** If the student misses an evaluation component, he/she may be granted a make-up. In case of an absence that is foreseen, make-up request should be personally made to the Instructor-in-Charge, well ahead of the scheduled evaluation component. Reasons for unanticipated absence that qualify a student to apply for make-up include medical emergencies or personal exigencies. In such an event, the student should contact the Instructor-in-Charge as soon as practically possible. ### CONTACT TIMINGS IN THE CHAMBER FOR ANY DISCUSSIONS: Interested students may contact the Instructor In-charge during the student free Hour and Wednesday, Friday 3:00-4:00 pm to clear doubts. SAMPLE THOUGHT PROVOKING QUESTIONS: (Here type sample typical questions for stude profesence) r students reference) REGISTRAR Registrar | SL<br>NO | QUESTION | MARKS | COURSE<br>OUTCOME<br>NO. | BLOOM'S LEVEL | |----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------|---------------| | 1 | Identify different types of energy sources used in electric vehicles and explain how to size the power supply for any given direct drive electric two or three wheelers? | 10 | 3 | Comprehension | | 2 | Explain how to operate separately excited DC motor in four quadrant mode? Comment on the suitability of this motor in pure EV application? | 10 | 3 | Comprehension | # **Target set for course Outcome attainment:** | Sl.no | C.O. | Course Outcomes | Target | set | for | |-------|------|--------------------------------------------------------------------------|----------|-----|-----| | | No. | | attainme | nt | in | | | | | percenta | ge | | | | | | | | | | | | | | | | | 01 | Co1 | Describe the importance of Electric Vehicles in recent trends | 60 | | | | 02 | Co2 | Discuss the components of Electric Vehicles and Hybrid Electric Vehicles | 60 | | | | 03 | Co3 | Summarize the properties of batteries and electric vehicle drive systems | 50 | | | | 04 | Co4 | Explain different charging methods of Electric vehicles | 50 | | | Signature of the course Instructor This course has been duly verified Approved by the D.A.C. Signature of the Chairperson D.A.C. | Course Code: | Course Title: Energy Au Type of Course: Open E | | | | | | | 3 | |------------------------|----------------------------------------------------------------------------------------|------------------------------|-------------|-------------------------|---------------------|--------|---------|--------| | EEE221 | The | ory only | | L-T-P-C | 3 | 0 | 0 | 3 | | Version No. | 2.0 | | | | | | | | | Course Pre- | Electrical and Electronics | Measurement | and Instrui | mentation & | Basic | of me | asurer | nent | | requisites | devices. | | | | | | | | | Anti-requisites | NIL | | | | | | | | | Course | Energy Audit helps to ma | • | • | | | | | | | Description | chain, highlighting areas f | | | • | | | • | | | | ability on the mechanism of employed to undertake an | •• | | • | | | • • | ically | | Course | The objective of the course is to familiarize the learners with the concepts of Energy | | | | | | | | | <b>Objective</b> | Audit and attain Entrepr | <mark>eneurial Skills</mark> | through P | <mark>roblem Sol</mark> | <mark>ving</mark> r | nethoo | dologie | es. | | Course | On successful completion | n of this course | the stude | ents shall be | able | to: | | | | Outcomes | 1. Explain audit parameter measure the parameters. | rs and working | principles | of measurin | g instr | ument | s used | to | | | 2. Discuss energy audit of compressed air systems. | boilers, furnace | es, power j | olant, steam | distrib | oution | systen | n and | | | 3.Explain energy audit of | HVAC systems | & Motors | 3 | | | | | | | 4. Discuss energy audit of lighting systems and buildings | | | | | | | | | <b>Course Content:</b> | | | | | | | | | | | Energy Audit - | | | | | | • • | | | Module 1 | Methodology and | Assignment | Data Col | lection | | 1 | 2 Sess | ions | | То | Types | | | | | | | | ### To Energy Scenarios: Energy Conservation, Energy Audit, Energy Scenarios, Energy Consumption, Energy Security, Energy Strategy, Clean Development Mechanism. Definition of Energy Audit, Place of Audit, Energy – Audit Methodology, Financial Analysis, Sensitivity Analysis, Project Financing Options, Energy Monitoring and Training. | Module 2 | <b>Energy Audit of Boilers</b> | Case Study/ | Data Collection/ Design | 11 Sessions | |-----------|--------------------------------|-------------|-------------------------|-------------| | Wiodule 2 | & Buildings | Assignment | Bata Concetton/ Besign | | Classification of Boilers, Parts of Boiler, Efficiency of a Boiler, Role of excess Air in Boiler Efficiency, Energy Saving Methods. Energy Audit Applied to Buildings: Energy – Saving Measures in New Buildings, Water Audit, Method of Audit, General Energy – Savings Tips Applicable to New as well as Existing Buildings. | Module 3 | Energy Audit of<br>HVAC Systems & | Case study | Data Collection | 12 Sessions | |----------|-----------------------------------|------------|-----------------|-------------| | | motors | | | | Introduction to HVAC, Components of Air – Conditioning System, Types of Air – Conditioning Systems, Human Comfort Zone and Psychrometry, Vapour – Compression Refrigeration Cycle, Energy Use Indices, Impact of Refrigerants on Environment and Global Warming, Energy – Saving Measures in HVAC, Star Rating and Labelling by BEE. Classification of Motors, Parameters related to Motors, Efficiency of a Motor, Energy Conservation in Motors, BEE Star Rating and Labelling. | Module 4 | Energy Audit of | Assignment/ | Data Collection / | 10 Sessions | |----------|------------------|--------------|-------------------|-------------| | Module 4 | Lighting systems | Presentation | Estimation | | **Energy Audit of Lighting Systems:** Fundamentals of Lighting, Different Lighting Systems, Ballasts, Fixtures (Luminaries), Reflectors, Lenses and Louvres, Lighting Control Systems, Lighting System Audit, Energy Saving Opportunities # **Targeted Application & Tools that can be used:** Application Area is Power System Data collection, Electricity Transmission and Distributed companies, Power Grid and State Electricity Boards Professionally Used Software: Mi Power/ PS CAD ### **Textbooks** - 3. "Industrial Energy management systems" Array .C, White, Philip S, David R Brown, Hemisphere publishing corporation, New York. - 4. "Handbook on Energy Audit "Sonal Desai McGraw Hill 1st Edition, 2015 ### References 1. "Energy management "by W.R. Murphy & G. Mckay Butter worth, Heinemann publications. ### **Online Resources** - 1. https://www.youtube.com/watch?v=iY2YaIlfEGk - 2. https://vemu.org/uploads/lecture\_notes/03\_01\_2020\_1480276911.pdf - 3. Ebook: A Research article on Demand Side Management: Demand Response, Intelligent Energy Systems and Smart Loads, - 4. https://puniversity.informaticsglobal.com **TOPICS RELEVANT TO "ENTREPRENEURIAL SKILLS":** Energy Audit Applied to Buildings: Energy – Saving Measures in New Buildings, Water Audit, Method of Audit for developing **Entrepreneurial Skills** through **Problem Solving methodologies.** This is attained through assessment component mentioned in course handout. **TOPICS RELEVANT TO HUMAN VALUES AND PROFESSIONAL ETHICS:** Energy Saving measures in New buildings, Audit and Saving Tips. | Catalogue<br>prepared by | Ms. Ragasudha C P | |---------------------------------------------------|-----------------------------------------------------------------| | Recommended<br>by the Board of<br>Studies on | BoS No: 11th. BoS held on 5/9/2020 | | Date of<br>Approval by the<br>Academic<br>Council | 14 <sup>th</sup> Academic Council Meeting<br>held on 24/12/2020 | (Established under the Presidency University Act, 2013 of the Karnataka Act 41 of 2013) ### [A-2] COURSE HAND OUT SCHOOL : Engineering DEPT. : EEE DATE OF ISSUE : NAME OF THE PROGRAM : B. Tech P.R.C. APPROVAL REF. : PU/AC-14/07/12\_2020 SEMESTER/YEAR : VI/ III COURSE TITLE & CODE : Energy Audit **EEE 221** COURSE CREDIT STRUCTURE : 3-0-0-3 CONTACT HOURS : 3hrs/week COURSE INSTRUCTOR : ### **Program Outcomes:** Graduates of the B.Tech. Program in Electrical and Electronics Engineering will be able to: PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. **PO3.** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. **PO4.** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. **PO6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. **PO8.** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. **PO9.** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. **PO11.** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. **PO12.** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. # 1. Course Prerequisites: Basic electronics, Measurements and Instruments - [1] Electrical and Electronics Measurement and Instrumentation - [2] Basic of measurement devices. ## 2. Course Description. Energy Audit helps to map the flow of energy (in its various forms) across the value chain, highlighting areas for interventions. This course is designed to develop analytical ability on the mechanism of energy audit and the technologies/simulation tools typically employed to undertake an audit exercise, supported by case studies & site visits. ## 3. COURSE OBJECTIVE: The objective of the course is to familiarize the learners with the concepts of Energy Audit and attain **Entrepreneurial Skills** through **Problem Solving methodologies.** # 4. COURSE OUTCOMES: On successful completion of this course the students shall be able to: **CO1:** Explain audit parameters and working principles of measuring instruments used to measure the parameters. CO2: Discuss energy audit of boilers, furnaces, power plant, steam distribution system and compressed air systems. CO3: Explain energy audit of HVAC systems & Motors CO4: Discuss energy audit of lighting systems and buildings ## MAPPING OF C.O. WITH P.O: [H-HIGH, M-MODERATE, L-LOW] | C.O.N0. | P.O.01 | P.O.02 | P.O.07 | P.O.10 | |---------|--------|--------|--------|--------| | 1 | Н | M | L | L | | 2 | Н | M | L | L () | | 3 | Н | M | L | L | |---|---|---|---|---| | 4 | Н | M | L | L | #### 1. CONTENT: #### **Module-I:** ## **Energy Audit - Methodology and Types** Energy Scenarios: Energy Conservation, Energy Audit, Energy Scenarios, Energy Consumption, Energy Security, Energy Strategy, Clean Development Mechanism. Definition of Energy Audit, Place of Audit, Energy – Audit Methodology, Financial Analysis, Sensitivity Analysis, Project Financing Options, Energy Monitoring and Training. [12 Sessions] [Bloom's level selected: Comprehension] #### **Module-2:** ### **Energy Audit of Boilers & Buildings** Classification of Boilers, Parts of Boiler, Efficiency of a Boiler, Role of excess Air in Boiler Efficiency, Energy Saving Methods. Energy Audit Applied to Buildings: Energy – Saving Measures in New Buildings, Water Audit, Method of Audit, General Energy – Savings Tips Applicable to New as well as Existing Buildings. [11 Sessions] [Bloom's level selected: Comprehension] #### **Module-III** ## **Energy Audit of HVAC Systems & motors:** Introduction to HVAC, Components of Air – Conditioning System, Types of Air – Conditioning Systems, Human Comfort Zone and Psychrometry, Vapour – Compression Refrigeration Cycle, Energy Use Indices, Impact of Refrigerants on Environment and Global Warming, Energy – Saving Measures in HVAC, Star Rating and Labelling by BEE. Classification of Motors, Parameters related to Motors, Efficiency of a Motor, Energy Conservation in Motors, BEE Star Rating and Labelling. [12 Sessions] [Bloom's level selected: Comprehension] #### **Module -IV** ## **Energy Audit of Lighting Systems:** Fundamentals of Lighting, Different Lighting Systems, Ballasts, Fixtures (Luminaries), Reflectors, Lenses and Louvres, Lighting Control Systems, Lighting System Audit, Energy Saving Opportunities [10 Sessions] [Bloom's level selected: Comprehension] # **DELIVERY PROCEDURE (PEDAGOGY):** **Topics for Self-Learning:** Take an example of a particular motor manufacturing industry and describe the BEE Star Rating and Labelling of Electric motors. ### **Experiential Learning Topics:** Case Study: 1] Prepare a compressive report on Energy situation in India and world. Case Study: 2] Discuss different techniques of DSM and also throw light on practical difficulties with Time of Day pricing. ## Note: - 6. All the Topics will be covered through offline lecture mode - 7. NPTEL video lectures of selected topics on smart sensors #### **Text Book** #### **Textbooks:** - 1. "Industrial Energy management systems" Array .C, White, Philip S, David R Brown, Hemisphere publishing corporation, New York. - 2. "Handbook on Energy Audit "Sonal Desai McGraw Hill 1st Edition, 2015 - (ii) Reference Book(s) #### References 1. "Energy management "by W.R. Murphy & G. Mckay Butter worth, Heinemann publications. #### Weblinks - 1. https://www.youtube.com/watch?v=iY2YaIlfEGk - 2. <a href="https://vemu.org/uploads/lecture\_notes/03\_01\_2020\_1480276911.pdf">https://vemu.org/uploads/lecture\_notes/03\_01\_2020\_1480276911.pdf</a> - 3. A Research article onDemand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads https://presiuniv.knimbus.com/user#/home #### **GUIDELINES TO STUDENTS:** - The students are advised to be very much regular to the online classes and sincerely attempt the learnings listed in the Pedagogical section. - The students are advised to take down the notes legibly which serves as a firsthand information to study and revise lecture topics on day to day basis. - The students are advised to visit the Edhitch portal on a regular basis to study the supporting materials shared by the course instructors. - The students are advised to use the journals, technical magazines and other relevant materials. - The students are advised to watch the video lectures available online to understand and review the concepts delivered in the class as well as problems assigned for self-learning topics. # 2. COURSE SCHEDULE: | Sl. No. | ACTIVITY | STARTING<br>DATE | CONCLUDING<br>DATE | TOTAL NUMBER OF<br>PERIODS | |---------|--------------------------------|------------------|--------------------|----------------------------| | 01 | Over View of the course | | | 02 | | 02 | Module: 01 | | | 10 | | 03 | Course Integration of Module:2 | | | 01 | | 04 | Module: 02 | | | 10 | | 05 | Quiz / Assignment | | NA | |----|--------------------------------|--|----| | 06 | Mid- term Test | | NA | | 07 | Test Paper Discussion | | 01 | | 08 | Course Integration of Module:3 | | 01 | | 09 | Module:03 | | 08 | | 13 | Course Integration of Module:4 | | 01 | | 14 | Module 4 | | 10 | | 15 | Project /case study | | NA | | 16 | End Term Examination | | NA | # 3. SCHEDULE OF INSTRUCTION: Module: 1 | Sl.<br>No | Session no | Lesson Title | Topics | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |-----------|------------|------------------------------------------------|-----------------------------------------|-----------------------------|-----------------------------|-----------| | 1 | S1 | Program<br>Integration | | CO1 | Lecture/PPT/<br>Black Board | Т1 | | 2 | S2 | Course Integration & course handout discussion | | CO1 | Lecture/PPT/<br>Black Board | T1 | | 3 | S3 | Energy Audit -<br>Methodology and<br>Types | Energy Conservation,<br>Energy Audit | CO1 | Lecture/PPT/<br>Black Board | Т1 | | 4 | S4 | Energy Audit -<br>Methodology and<br>Types | Energy Conservation,<br>Energy Audit | CO1 | Lecture/PPT/<br>Black Board | T1 | | 5 | S5 | Energy Audit -<br>Methodology and<br>Types | Energy Scenarios, Energy<br>Consumption | CO1 | Lecture/PPT/<br>Black Board | T1 | | 6 | S6 | Energy Audit -<br>Methodology and<br>Types | Energy Scenarios, Energy<br>Consumption | CO1 | Lecture/PPT/<br>Black Board | Т1 | | 7 | S7 | Energy Audit -<br>Methodology and<br>Types | Energy Security, Energy<br>Strategy | CO1 | Lecture/PPT/<br>Black Board | Т1 | | 8 | S8 | Energy Audit -<br>Methodology and<br>Types | Clean Energy Development Mechanism. | CO1 | Lecture/PPT/<br>Black Board | T1 | | | | Energy Audit - | Definition of Energy | CO1 | Lecture/PPT/ | | | |----|-----------------------|-----------------|----------------------------|-----|--------------|--------------|--| | 9 | <b>S</b> 9 | Methodology and | Audit, Place of Audit | | Black Board | <b>T1</b> | | | | | Types | | | | | | | | | Energy Audit - | Energy – Audit | CO1 | Lecture/PPT/ | | | | 10 | 010 | | | COI | | <b>7</b> 0.4 | | | 10 | S10 | Methodology and | Methodology | | Black Board | <b>T1</b> | | | | | Types | | | | | | | | | Energy Audit - | Financial Analysis, | CO1 | Lecture/PPT/ | | | | | 011 | | • | COI | | 7D4 | | | 11 | S11 | Methodology and | Sensitivity Analysis | | Black Board | <b>T1</b> | | | | | Types | | | | | | | | | Engrav Audit | Project Financing Options, | CO1 | Lecture/PPT/ | | | | | | Energy Audit - | 3 0 1 | COI | | | | | 12 | S12 | Methodology and | Energy Monitoring and | | Black Board | <b>T1</b> | | | | | Types | Training. | | | | | | | | | | | | | | | | Module 1 is completed | | | | | | | | | | | | | | | | # Module: 2 | Sl.<br>No | Session no | Lesson Title | Topics | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |-----------|------------|-------------------------------------------|------------------------------------------------------------------------------------|-----------------------------|---------------------------------|-----------| | 1 | S1 | Course integration | | | | | | 2 | S2 | Energy audit of boilers & buildings | Classification of Boilers,<br>Parts of Boiler | CO2 | Lecture/P<br>PT/ Black<br>Board | T1 | | 3 | S3 | Energy audit of boilers & buildings | Efficiency of a Boiler | CO2 | Lecture/P<br>PT/ Black<br>Board | T1 | | 4 | S4 | Energy audit of boilers & buildings | Role of excess Air in<br>Boiler Efficiency | CO2 | Lecture/P<br>PT/ Black<br>Board | T1 | | 5 | S5 | Energy audit of boilers & buildings | Energy Saving Methods | CO2 | Lecture/P<br>PT/ Black<br>Board | Т1 | | 6 | S6 | Energy audit of boilers & buildings | Energy Audit Applied to<br>Buildings: Energy – Saving<br>Measures in New Buildings | CO2 | Lecture/P<br>PT/ Black<br>Board | Т1 | | 7 | S7 | Energy audit of<br>boilers &<br>buildings | Energy Audit Applied to<br>Buildings: Energy – Saving<br>Measures in New Buildings | CO2 | Lecture/P<br>PT/ Black<br>Board | Т1 | | 8 | S8 | Energy audit of boilers & buildings | Water Audit | CO2 | Lecture/P<br>PT/ Black<br>Board | T1 | | | |----|-----------------------|-------------------------------------|-------------------------------------------------------------------------------|-----|---------------------------------|----|--|--| | 9 | S9 | Energy audit of boilers & buildings | Method of Audit | CO2 | Lecture/P<br>PT/ Black<br>Board | T1 | | | | 10 | S10 | Energy audit of boilers & buildings | Method of Audit | CO2 | Lecture/P<br>PT/ Black<br>Board | T1 | | | | 11 | S11 | Energy audit of boilers & buildings | General Energy – Savings Tips Applicable to New as well as Existing Buildings | CO2 | Lecture/P<br>PT/ Black<br>Board | T1 | | | | 12 | S12 | Energy audit of boilers & buildings | General Energy – Savings Tips Applicable to New as well as Existing Buildings | CO2 | Lecture/P<br>PT/ Black<br>Board | T1 | | | | | Module 2 is completed | | | | | | | | # Module: 3 | Sl.<br>No | Session<br>no | Lesson Title | Topics | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |-----------|---------------|---------------------------------|---------------------------------------------------------------------|-----------------------------|---------------------------------|-----------| | 1 | S1 | | Course integration of Module-3, | | | | | 2 | S2 | Energy audit of<br>HVAC systems | Introduction to HVAC,<br>Components of Air –<br>Conditioning System | CO3 | Lecture/PP<br>T/ Black<br>Board | T2 | | 3 | S3 | Energy audit of<br>HVAC systems | Types of Air – Conditioning Systems, Comfort Zone and Psychrometry | CO3 | Lecture/PP<br>T/ Black<br>Board | T2 | | 4 | S4 | Energy audit of<br>HVAC systems | Vapour – Compression<br>Refrigeration Cycle | CO3 | Lecture/PP<br>T/ Black<br>Board | T2 | | 5 | S5 | Energy audit of<br>HVAC systems | Energy Use Indices | CO3 | Lecture/PP<br>T/ Black<br>Board | T2 | | 6 | S6 | Energy audit of<br>HVAC systems | Impact of Refrigerants on<br>Environment and Global<br>Warming | CO3 | Lecture/PP<br>T/ Black<br>Board | T2 | | | | Energy audit of | Star Rating and Labelling | CO3 | Lecture/PP | T2 | |----|------------|-------------------|---------------------------|------|----------------|----------------| | 7 | S7 | HVAC systems | by BEE. | | T/ Black | | | | 27 | | | | Board | | | | | | | | | | | | | Energy audit of | Classification of Motors, | CO3 | Lecture/PP | T2 | | 9 | <b>S</b> 9 | motors | Parameters related to | | T/ Black | | | | | | Motors | | Board | | | | | Energy audit of | Efficiency of a Motor | CO3 | Lecture/PP | T2 | | 10 | S10 | motors | | 003 | T/ Black | 12 | | 10 | 510 | motors | | | Board | | | | | | | | | | | | | Energy audit of | Energy Conservation in | CO3 | Lecture/PP | T2 | | 11 | S11 | motors | Motors | | T/ Black | | | | | | | | Board | | | | | Energy audit of | BEE Star Rating and | CO3 | Lecture/PP | T2 | | 12 | S12 | motors | Labelling. | | T/ Black | | | | | | | | Board | | | | | Self-Learning | | CO1- | https://presig | niv.knimbus.co | | | | Topic/case study | | CO3 | | r#/home | | | | 1 opic/case study | | | III use | I III III III | | | | | Module 3 is completed | | | | # Module: 4 | Sl.<br>no | Session no | Lesson Title | Topics | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |-----------|------------|-------------------------------------|------------------------------------|-----------------------------|---------------------------------|-----------| | 1 | S1 | | Course integration of module-4 | | | | | 2 | S2 | Energy Audit of<br>Lighting Systems | Fundamentals of Lighting | CO4 | Lecture/P<br>PT/ Black<br>Board | T2 | | 3 | S3 | Energy Audit of<br>Lighting Systems | Different Lighting Systems | CO4 | Lecture/P<br>PT/ Black<br>Board | T2 | | 4 | S4 | Energy Audit of<br>Lighting Systems | Ballasts, Fixtures<br>(Luminaries) | CO4 | Lecture/P<br>PT/ Black<br>Board | T2 | | 5 | S5 | Energy Audit of<br>Lighting Systems | Reflectors, Lenses and Louvres | CO4 | Lecture/P<br>PT/ Black<br>Board | T2 | | 6 | S6 | Energy Audit of<br>Lighting Systems | Lighting Control Systems, | CO4 | Lecture/P<br>PT/ Black<br>Board | T2 | |----|-------------|-------------------------------------|-----------------------------|-----|---------------------------------|----| | 7 | S7 | Energy Audit of<br>Lighting Systems | Lighting Control Systems, | CO4 | Lecture/P<br>PT/ Black<br>Board | T2 | | 8 | \$8 | Energy Audit of<br>Lighting Systems | Energy Saving Opportunities | CO4 | Lecture/P<br>PT/ Black<br>Board | T2 | | 9 | S9 | Energy Audit of<br>Lighting Systems | Lighting System Audit | CO4 | Lecture/P<br>PT/ Black<br>Board | T2 | | 10 | <b>S</b> 10 | Program integration-2 | | | | | **TOPICS RELEVANT TO "ENTREPRENEURIAL SKILLS":** Energy Audit Applied to Buildings: Energy – Saving Measures in New Buildings, Water Audit, Method of Audit for developing **Entrepreneurial Skills** through **Problem Solving methodologies.** This is attained through the **Assignment** as mentioned in the assessment component. # 4. ASSESSMENT SCHEDULE: | Sl.no | Assessment type | contents | Course outcome Number | Duration In Minutes | marks | weightage | Venue,<br>DATE<br>&TIME | |-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|---------------------|-------|-----------|-------------------------| | 1 | Assignment Problem Solving | Module 2 | CO2- CO3 | | 40 | 20% | | | 2 | Assignement as self Learning topics Review of digital/e- resources from Pres. Univ.link given in the references section (Mandatory to submit the screenshots of accessing digital Resource. Otherwise it will not be evaluated | Module1-3 | CO3 | | 10 | 5% | | | 3 | Midterm Test | Module-1 | CO1,CO2 | 1 hr | 50 | 25% | | | 4 | End Term Final Examination | Module-1,2,3 & 4 | CO1-CO4 | 3 hrs | 100 | 50% | | | Sl. | Assessment type | List of Tasks | Course | Duration | marks | weightage | Venue, | |-----|-----------------------|---------------|---------|----------|-------|-----------|--------| | | | | outcome | | | | DATE | | No. | [Include here | | | In Hours | | | &TIME | | | assessment method for | | Number | | | | | | | self-learning | | | | | | | | | component also] | | | | | | | | | _ | | | | | | | - 5. COURSE CLEARANCE CRITERIA: : (Here mention the minimum requirements of attendance, marks in continuous assessment & term end examination, make up exam policy and other details as per the academic regulations & PRC): - Minimum of 75% Attendance is must to take up examination. - Minimum of 40% score is must in Midterm and Final End Term Examination. - However a minimum of 50% of grand total marks or F-grade limit under relative grading, whichever is lower. - Make up policy is applicable only as per academic regulation - There will be no make-up for ASSIGNMENT and QUIZ. #### **MAKEUP POLICY:** If the student misses an evaluation component, he/she may be granted a make-up. In case of an absence that is foreseen, make-up request should be personally made to the Instructor-in-Charge, well ahead of the scheduled evaluation component. Reasons for unanticipated absence that qualify a student to apply for make-up include medical emergencies or personal exigencies. In such an event, the student should contact the Instructor-in-Charge as soon as practically possible. #### 6. CONTACT TIMINGS FOR ANY DISCUSSIONS: Interested students may contact the Instructor In-charge during the student free Hour and Monday (2pm – 4pm) to clear doubts. ## **Sample Thought Provoking Questions [For Theory Component]:** (Here type sample typical questions for students 'reference) | Sl<br>No. | Question | Marks | Course<br>Outcome<br>No. | Bloom's<br>Level | |-----------|----------------------------------------------------------------------------------------------------|-------|--------------------------|------------------| | 1. | a. Identify the methods to determine the energy efficiency of a building | 8 | CO1 | Comprehension | | | <ul> <li>Discuss the process for identifying areas of<br/>improvement within a building</li> </ul> | | | | **Target set for course Outcome attainment:** | Sl.no | C.O. | Course Outcomes | Target set for attainment | |-------|------|--------------------------------------------------------------------------------------------------------------|---------------------------| | | No. | | in percentage | | 01 | CO 1 | Explain audit parameters and working principles of measuring instruments used to measure the parameters. | 60% | | 02 | CO 2 | Discuss energy audit of boilers, furnaces, power plant, steam distribution system and compressed air systems | 60% | | 03 | CO 3 | Explain energy audit of HVAC systems & Motors | 60% | | 04 | CO 4 | Discuss energy audit of lighting systems and buildings | 60% | Signature of the course Instructor This course has been duly verified Approved by the D.A.C. Signature of the Chairperson D.A.C. | Course Code: | Course Title: Por Applications for E | | LTDC | 2 | 0 | | 2 | | | |-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------|----------|----------|------------------------------------------------------|--|--| | EEE3048 | Type of Course: 1 & Theory only | L-T- P- C | 3 | 0 | 0 | 3 | | | | | Version No. | 1.0 | | 1 | I | | | | | | | Course Pre-<br>requisites | ELECTRIC DRIVI | ES | | | | | | | | | Anti-requisites | Nil | | | | | | | | | | Course Description | control at levels at<br>design and control<br>drives used for EV | The course includes an overview of system architectures of EV's and system dynamic modeling and control at levels appropriate to determine requirements, also this course introduces a concept of design and control of power converters for electric drive vehicles, also enables to know the various drives used for EV's and energy management in EV's. The course develops an analytical skills and enhances the programming/Simulink modeling abilities through assignments. | | | | | | | | | Course Objectives | The objective of the | ne course is to famil | iarize the lear | ners v | with the | conce | pts of Power Electronics<br>through Problem Solving | | | | Course Out Comes | On successful completion of the course the students shall be able to: 1] Explain the various technologies are associated with EV's. 2] Describe the architectures of HEV, PHEV and EV's. 3] Analyze the modelling of DC-DC converter systems for EV's. 4] Describe the AC Motor drive operation for EV's 5] Analyze the electrical circuit modelling of Battery system. | | | | | | | | | | <b>Course Content:</b> | | | | | | | | | | | Module 1 | An Overview of<br>Power<br>Electronics in<br>EV's | A ccionment | UIZ/True or<br>ALSE Type | | | No. | of Sessions: 7 | | | | Management), EV | Multidisciplinary T<br>Propulsion ( Moto | rs, Power Convert | ters, Electron | nic C | ontrolle | rs), B | alsion, Intelligent Energy<br>attery Charging, Power | | | | Accessories (Temper | ature Control Unit, | | | | erter Ui | nit. Hy | brid Electric Vehicles. | | | | Module 2 | System overview | Assignment ra | ata Collection<br>ting of variou<br>lectric Vehicle | S | | No. | of Sessions:7 | | | | Topics: Vehicle dyna sizing of drivetrain co | | | | PHEV | V) and e | lectric | vehicles (EV), Rating and | | | | Module 3 | Bidirectional DC-DC converters | Assignment si | Iodeling and mulations of I Converter. | OC- | | No. | of Sessions: 8 | | | | Topics: Introduction, operation, analysis and | | | | ated a | and non- | -isolate | d converters, Steady-state | | | | Module 4 | Inverter Based AC<br>Motor Drives | Assignment si | Iodeling and mulations | | | | of Sessions: 8 | | | | Topics: An introdumachine, DC-to-AC in | | - | | | _ | • | onous machine, Induction | | | | Module 5 | Energy | Assignment si | Iodeling and mulations of attery systems | • | ,110 011 | | of Sessions:8 | | | | | on to battery electro- | - chemistry, Types a | and characteris | stics c | | | energy, power, cycle life, | | | | | | e characteristics, ele | ctrical circuit | mode | eling, B | Battery | management system, cell | | | | balancing, Modeling Targeted Application | | he used: | | | | | | | | The major targeted applications of the course is extended to various fields such as mainly Automotive electrical and electronic systems, commercial, industrial, residential, telecommunication, transportation, utility systems and Aerospace etc. In case of automotive electronics, the electrically-generated systems are used in automobiles such as road vehicles like telematics, in-car entertainment systems, and so on. The need to control engines of automobiles originated in automotive electronics for proper controlling and conversion. Professionally Used Software: MATLAB/Simulink #### Text Book - 1. Ehsani, Mehrdad, Yimin Gao, Stefano Longo, and Kambiz Ebrahimi, "Modern electric, hybrid electric, and fuel cell vehicles", CRC press, 2018, 3<sup>rd</sup> Edition. - 2. Haitham Abu-Rub, Mariusz Malinowski, Kamal Al-Haddad, "Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications", Wiley Publishers, June 2014. #### References - 1. Yangsheng Xu, Jingyu Yan, Huiihuan Qian and Tin Lun Lam, "Hybrid Electric Vehicle Design and Control: Intelligent Omni directional Hybrids", Mc-Graw Hill Education, 2014. - R. Erickson, D. Maksimovic, Fundamentals of Power Electronics, Springer 2001 (Chapters 1-5); on-line access available from CU network. - 3. Evaluation of the 2010 Toyota Prius Hybrid Electric Drive System, Oak Ridge National Lab report. - 4. Davide Andrea, Battery Management Systems for Large Lithium-Ion Battery Packs, Artech House, 2010. - 5. C.Mi, M.A.Masrur, D.W.Gao, Hybrid Electric Vehicles, Wiley 2011. #### **Online Resources:** #### 1.Ebook: $\frac{https://puniversity.informaticsglobal.com: 2282/ehost/ebookviewer/ebook/bmxlYmtfXzE2NjQ0OF9fQU41?sid=5ac3e684-9a30-45af-a5c4-a4c437d65a8c@redis&vid=3&format=EB$ # 2. Casestudy: $\frac{https://puniversity.informaticsglobal.com:2282/ehost/ebookviewer/ebook/bmxlYmtfXzE2NjYwNV9fQU41?}{sid=5ac3e684-9a30-45af-a5c4-a4c437d65a8c@redis&vid=4&format=EB}$ - 3. Seminar: <a href="https://puniversity.informaticsglobal.com/menu">https://puniversity.informaticsglobal.com/menu</a> - 4. <a href="https://nptel.ac.in/noc/courses/noc20/SEM1/noc20-ee18/">https://nptel.ac.in/noc/courses/noc20/SEM1/noc20-ee18/</a> - 5. https://www.elprocus.com/power-electronics-in-automotive-applications/ - 6. https://www.energy.gov/eere/vehicles/power-electronics-research-and-development **Topics relevant to "ENTREPRENEURIAL SKILLS":** Introduction to switched-mode power converters, vehicle dynamics are for developing **Entrepreneurial Skills** through **Problem Solving** methodologies. This is attained through assessment components mentioned in the course handout. | 1 | I | | | | | |------------------------------------------------|--------------------------------------------------------------|--|--|--|--| | Catalogue prepared by | Mr. Ravi V Angadi & Mr. K Sreekanth Reddy | | | | | | Recommended by<br>the Board of Studies<br>on | BoS No: 12th BoS held on 27/7/21 | | | | | | Date of Approval by<br>the Academic<br>Council | 16 <sup>th</sup> Academic Council Meeting held on 23/10/2021 | | | | | # (Established under the Presidency University Act, 2013 of the Karnataka Act 41 of 2013) ## ACA-2[2020] COURSE HAND OUT SCHOOL: School of Engineering DEPARTMENT: EEE DATE OF ISSUE: NAME OF THE PROGRAM : Electrical & Electronics Engineering P.R.C. APPROVAL REF : PU/AC-16/EEE/2018-2022/2021 SEMESTER/YEAR : COURSE TITLE & CODE : PWM CONVERTERS - EEE 317 COURSE CREDIT STRUCTURE : 3-0-0-3 CONTACT HOURS : Monday 1:00-1:50 PM : Wednesday: 2PM-2:50PM : Friday 3PM-3:50PM COURSE INSTRUCTOR :Mr. Sarin COURSE INCHARGE : Mr.Sarin ## 5. Program Outcomes: Graduates of the B.Tech. Program in Electrical and Electronics Engineering will be able to: **PO1**. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. **PO2.** Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. **PO3**. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. **PO7.** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. **PO8.** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. **PO9.** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. **PO11.** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. ## 6. Course Prerequisites: Electric power generation, Transmission and Distribution # 7. Course Description. As the Smart Grid is the integration of numerous technologies, systems and processes with the aim to modernize and fully automate the entire electricity grid covering generation, transmission, distribution, utilization plus conservation of energy. This course aims at introducing the concepts of SG, its definitions, architectures along with the policies followed by various countries. Also this course includes various technologies pertaining to smart grid, smart metering with power reliability, types of smart meters and its communication interfaces along with its applications in distribution power generation and cyber security. It also deals with aspects of modern substation and automation and also introduces the students to the concept of distribution management system. Lastly it includes the various types of energy storage technologies in smart grid. ## 8. Course Objective. The objective of the course is to familiarize the learners with the concepts of Power Electronics Applications for Electrical Vehicles and attain **Employability Skills** through **Problem Solving** methodologies. #### **Course Outcomes.** On successful completion of the course the student shall be able to: **CO1** : Understand the basic operations of various PWM techniques for Power Converters CO2 : Analysis and Design of Control Loops for PWM power converters **CO3** : Explain various topologies of PWM Converters. **CO4** : Summarize various the various power factor improvement in PWM Converters ## 9. Mapping of Course Outcomes and Program Outcomes: | СО | PO4 | PO5 | PO6 | PO10 | PO12 | |-----|-----|-----|-----|------|------| | CO1 | M | L | L | M | Н | | CO2 | Н | L | M | M | Н | | CO3 | Н | L | L | L | Н | | CO4 | Н | M | L | M | Н | # 10. Course content: (Syllabus) ## **Module-I:** Introduction to PWM Converters AC/DC and DC/AC power conversion, overview of applications of voltage source converters, pulse modulation techniques for bridge converters. [7 Sessions][Blooms Level Selected: Knowledge] # **Module-II: PWM Techniques** Bus clamping PWM, space vector based PWM, advanced PWM techniques, practical devices in converter; calculation of switching and conduction losses. [14 Sessions][Blooms Level Selected: Comprehensive] ### **Module-III:** Multi Level Converters Compensation for dead time and DC voltage regulation; dynamic model of a PWM converter, multilevel converters. [10 Sessions][Blooms Level Selected: Comprehensive] # **Module-IV:** Power factor improvements Estimation of current ripple and torque ripple in inverter fed drives; line – side converters with power factor compensation. ### 11. Delivery Procedures: • The teaching pedagogy adopted here in this course are Explaining, Lecturing, Demonstrating, Collaborating and Facilitating. ### **Topics for Self-learning:** • The Main Features of SG # **Topics for Participative Learning:** Major Challenges in design of SG. # **Topics for Technology Enabled Learning.** - Smart Grid Road Map for India. - Smart Grid Developments in India ## **Topics for Problem Based Learning:** - Demand Side Management in India - **12. Learning Materials:** All the Articles are from standard reputed journals. Along with this the **class notes** also will be given. Text Book: "Smart Grid Technologies and Applications" Janaka Ekanayake et al, Wiley 2012. #### **Research Articles:** - Introduction to Smart Grid. - Smart Grid Initiatives in India. - Introduction to Smart Grid Architecture. - Demand response in smart electricity grids equipped with renewable energy sources: A review - IoT-enabled Smart Grid via SM: An Overview. ### 13. Guidelines to Students: - A Separate note book and attendance is mandatory. - Late comers to the class is not entertained. - Prior Intimation has to be done before taking the leave. - Continues access to Edhitch portal for all the important documents. - Students are advised to go through all the available diverse technologies for SG - The assignments given are viewed seriously, on time submission is a prerequisite. - As it's a course based on theory, students are asked to understand the concept by reading the given research articles and class notes. - Absent during class test and assignment hours is not entertained which may affect the qualitative assessment. REGISTRAR #### 14. Course Schedule | S.No | Activity | Date Of Start | Date Of End | Total No. of Hours | |------|----------|---------------|----------------------|--------------------| | | | Course Integ | gration: Module – 1. | Seminar Seminar | | 1 | Module: 01 | | | 7 | | | | |---|---------------------------------|---------------------|-----------------------|----------------------------------|--|--|--| | | | Course Integ | gration: Module – 2. | | | | | | 2 | Module : 02 | | | 14 | | | | | 3 | IA-1 | | | 60 Min | | | | | | Course Integration: Module – 3. | | | | | | | | 4 | Module: 03 | | | 10 | | | | | | Submission of | Digital Assignmen | t for Module 1, 2 D | OS: 12 <sup>th</sup> MAY' 2022. | | | | | 5 | IA – 2 | | | 60 Min | | | | | | | Course Integ | gration: Module – 4. | | | | | | 6 | Module : 04 | | | 5 | | | | | | Submission of | f Digital Assignmer | nt for Module 3, 4. I | OOS: 20 <sup>th</sup> Nov' 2020. | | | | | 7 | Term End Examination | | | | | | | - Digital Assignments can be also hand written by mentioning proper details. The diagrams should not be drawn in free hand. The written documents are to be scanned using Cam Scanner and convert them into a PDF for submission. - The aforementioned dates may be considered as tentative. Changes can be done accordingly. - DA's have to be done individually. Similar documents are not considered for assessment. ## 15. Schedule Of Instruction | S.<br>No | Session No<br>(Tentative<br>Dates) | Lesson Title | Topics | Course<br>Outcome<br>Number | Delivery<br>Mode | Text Books<br>and<br>Reference<br>Books | |----------|------------------------------------|------------------------------|----------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------------------| | | | Modul | e: 1: Basic Concepts of Sma | art Grid. | | | | 1 | L1 | Basic Concepts of Smart Grid | Introduction and Definitions, Objectives, Benefits of SG | CO1 | Lecture/Online<br>Classroom | T1 Ch 1 | | 2 | L2 | | Comparison of<br>Traditional Grid and SG,<br>SG Domains | CO1 | Lecture | T1 Ch 1 | | 3 | L3 | | Aims and Technologies of SG. | CO1 | Lecture | T1 Ch 1 | | 4 | L4 | | Functions of SG | CO1 | Lecture | T1 Ch 1 | | 5 | L5 | | Policies of SG by different Countries | CO1 | Lecture | T1 Ch 1 | |----|---------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------|------------|-----------------|---------| | 6 | L6 | | Issues and Challenges of SG | CO1 | Lecture | T1 Ch 1 | | 7 | L7 | | Characteristics of SG<br>,overview of technologies<br>for SG | CO1 | Lecture | T1 Ch 1 | | | Module-2: Com | munication technologies a | and information security in | Smart Grid | l and smart met | ering. | | 8 | L8 | Communication technologies and information security in Smart Grid and smart metering. | Data communication - Dedicated and shared communication channels | CO2 | Lecture | T1 Ch 2 | | 9 | L9 | | Communication channels - Switching techniques | CO2 | Lecture | T1 Ch 2 | | 10 | L10 | | Layered architecture and protocols | CO2 | Lecture | T1 Ch 2 | | 11 | L11 | | Information security for the Smart Grid | CO2 | Lecture | T1 Ch 4 | | 12 | L12 | | -Encryption-decryption methods | CO2 | Lecture | T1 Ch 4 | | 13 | L13 | | Authentication-Digital signatures- | CO2 | Lecture | T1 Ch 4 | | 14 | L14 | | Authentication-Digital signatures | CO2 | Lecture | T1 Ch 4 | | 15 | L15 | | Advanced Metering Infrastructure Technology (AMI) | CO2 | Lecture | T1 Ch 5 | | 16 | L16 | | Smart meters: An overview of the hardware used | CO2 | Lecture | T1 Ch 5 | | 17 | L17 | Smart meters: An overview of the hardware used | CO2 | Lecture | T1 Ch 5 | |----|-----|----------------------------------------------------------------|--------|---------|---------| | 18 | L18 | Communications infrastructure and protocols for smart metering | CO2 | Lecture | T1 Ch 5 | | 19 | L19 | Communications infrastructure and protocols for smart metering | CO2 | Lecture | T1 Ch 5 | | 20 | L21 | Demand-side integration | CO2 | Lecture | T1 Ch 5 | | | | MODULE 3: Distribution Automation an | nd DMS | | | | 21 | L22 | Distribution automation equipment Introduction | CO3 | Lecture | T1 Ch 6 | | 22 | L23 | Substation automation equipment | CO3 | Lecture | T1 Ch 6 | | 24 | L24 | Components of modern substation | CO3 | Lecture | T1 Ch 6 | | 25 | L25 | Faults in distribution systems | CO3 | Lecture | T1 Ch 6 | | 26 | L26 | Voltage regulation | CO3 | Lecture | T1 Ch 6 | | 27 | L27 | Distribution Management Systems— Introduction | CO3 | Lecture | T1 Ch 7 | | 28 | L28 | SCADA | CO3 | Lecture | T1 Ch 7 | | 29 | L29 | Modelling and analysis tools | CO3 | Lecture | T1 Ch 7 | | 30 | L30 | Applications of DMS | CO3 | Lecture | T1 Ch 7 | | 31 | L31 | | Applications of DMS | CO3 | Lecture | T1 Ch 7 | |----|-----|------------------------------------|----------------------------------------------------------------------------------------------------|----------|---------|----------| | | | MODULE 4:1 | Energy Storage Technologic | es in SG | | | | 32 | L32 | Energy Storage Technologies in SG. | Energy Storage system – Introduction | CO4 | Lecture | T1 Ch 10 | | 33 | L33 | | Application areas of Energy storage systems | CO4 | Lecture | T1 Ch 10 | | 34 | L34 | | Application areas of Energy storage systems | CO4 | Lecture | T1 Ch 10 | | 35 | L35 | | Different Energy storage technologies. | CO4 | Lecture | T1 Ch 10 | | 36 | | | Different Energy storage technologies. Revision from 17 <sup>th</sup> Nov-10 <sup>th</sup> Dec 20 | CO4 | Lecture | T1 Ch 10 | **Topics relevant to "ENTREPRENEURIAL SKILLS":** Introduction to switched-mode power converters, vehicle dynamics are for developing **Entrepreneurial Skills** through **Problem Solving** methodologies. This is attained through **Assignment** components as mentioned in the Components. # 16. Assessment Schedule: | Component | Duration<br>(minutes) | %<br>Weightage | *Date & Time | Syllabus | |----------------------------------------------------------------------------------------|-----------------------|----------------|--------------|-------------| | Assignment | 20 | 10 | | | | Test 1 | 60 | 15 | | | | Test 2 | 60 | 15 | | | | *End Term Final Examinations | 100 | 50 | | | | Assignment Review of digital/e- resources from Pres. Univ.link given in the references | | 10 | | Assignments | | section (Mandatory | | | |---------------------|--|--| | to submit the | | | | screenshots of | | | | accessing digital | | | | Resource. Otherwise | | | | it will not be | | | | evaluated | | | <sup>\*</sup> Final Date & Time and Venue will be notified by the COE later. ## 17. Course Clearance Criteria - Minimum of 75% Attendance is a prerequisite for take up of examination. - Minimum of 40% is mandatory for Internal Assessment. - Minimum of 30% in the Term End Examination.. # 18. Contact Timings In The Chamber For Any Discussions: • Thusday (9AM to 11AM). # 19. Sample Thought Provoking Questions - Power line communication simulation tools, Libraries etc available? - Credit to ICT or ICT based Products? - Suitable Areas of research in SG? - Best plat form to design battery bank Simulator? - How to develop simulation and prediction tools for demand side management in SG? # **20.** Target Set For Course Outcome Attainment: | S.NO | Course<br>Outcome | CO's | Target Set for Attainment in % | |------|-------------------|-----------------------------------------------------------------------------------------------------|--------------------------------| | 1 | CO1 | Relate the concepts of traditional grid to Smart Grid. | 50% | | 2 | CO2 | Discuss the aspects of communication and information technologies in Smart grid and smart Metering. | 50% | | 3 | CO3 | <b>Discuss</b> the components of modern substation and Distribution management system | 55% | | 4 | CO4 | <b>Distinguish</b> different types of Energy storage Technologies in Smart Grid | 60% | # **21.** Course completion Table | Sl. | Activity | | | | |-----|----------------------------------|----------------------------------|-------------------------------|---------| | No. | As listed in the course Schedule | <b>Scheduled Completion Date</b> | <b>Actual Completion Date</b> | Remarks | | 1 | Module-1 | | | |---|----------|--|--| | 2 | Module-2 | | | | 3 | Module-3 | | | | 4 | Module-4 | | | | 5 | Test-1 | | | | 6 | Test-2 | | | Course Outcome Attainment: | C.O<br>No. | Course Outcomes | Target set for attainment in percentage | Actual C.O. Attainment In Percentage | Remarks on attainment & Measures to enhance the attainment | |------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|------------------------------------------------------------| | 01 | <b>Relate</b> the concepts of traditional grid to Smart Grid. | | | | | 02 | <b>Discuss</b> the aspects of communication and information technologies in Smart grid and smart Metering. | | | | | 03 | <b>Discuss</b> the components of modern substation and Distribution management system | | | | | 04 | <b>Distinguish</b> different types of Energy storage Technologies in Smart Grid | | | | | Signatura | of the course | Instructor | |-----------|---------------|-------------| | Signature | or the course | Instructor: | This course has been duly verified Approved by the D.A.C. Signature of the Chairperson D.A.C. | Course Code: | Course Title: Batte | ery Management Systems | s | | | | | |------------------------------|-----------------------|--------------------------------------------------------------------------------------|------------|----------------|----------------|--------------|-----------| | EEE3036 | | scipline Elective & Theor | | L- <b>P-</b> C | 3 | 0 | 3 | | | only | • | | | | | | | Version No. | 1.0 | | • | | | | • | | <b>Course Pre-requisites</b> | NIL | | | | | | | | <b>Anti-requisites</b> | NIL | IIL | | | | | | | <b>Course Description</b> | This course will pro | vide a firm foundation on | n the arc | hitecture a | nd funct | tioning of | battery- | | | management-system | , how Lithium-ion batter | ries worl | k and how | to mod | del their b | oehavior | | | • | athematically. It also gives an exposure to the role of battery management system in | | | | | | | | | The course is of analytic | | | | - | | | | and problem-solving | tteries and learning variou<br>abilities. | is algorit | thms. The | course d | evelops ai | nalytıcal | | Course Objectives | | e course is to familiarize | e the les | arners with | the co | ncents of | Rattery | | Course Objectives | Management System | | | | | _ | | | | methodologies. | | | | | | | | <b>Course Out Comes</b> | On successful compl | etion of the course the stud | dents sha | all be able | to: | | | | | | the basic components and t | function | ality of the | Battery | Managem | ent | | | System | | | | | ~ | | | | | ous requirements and topo | _ | • | _ | ent Syster | n. | | | _ | ous algorithms used in Bat<br>Battery Management Syst | - | - | • | | | | | | function of battery in elec | | | | | | | | | | | | | | | | <b>Course Content:</b> | | | | | | | | | | | | | | | | | | | Introduction to | | | | | | | | Module 1 | Battery | Assignment | Data Ar | nolycic | | 6.6 | Sessions | | Module 1 | Management | Assignment | Data Ai | iarysis | | 0 6 | Sessions | | | Systems | | | | | | | | | | Systems (BMS), importan | | | | | | | Architecture of BMS, C | lassification of BMS, | principles of operation of s | standard | electroche | mical ba | ttery cells. | • | | Module 2 | Lithium-ion cells | | | | | 8.5 | Sessions | | | | Lithium-ion cells over star | ndard el | ectrochem | ical batt | | | | | | rking. Equivalent circuit n | | | | | _ | | | 1 | | | | | | | | M 11 2 | BMS requirements | | D 11 | 0.1. | | | · • | | Module 3 | & BMS | Assignment | Problem | n Solving | | 6.3 | Sessions | | Tonics: RMS requireme | Topologies | sensing and high-voltage of | control 1 | raquiramar | its for pr | otection is | nterface | | • • | • | AS Topologies - Distribute | | • | • | | | | topology | | | | | | | | | Module 4 | Algorithms used in | Assignment | Problem | n Solving | | 8.5 | Sessions | | | BMS | _ | | | - D :: | | | | and Power Estimation, i | | ncing Algorithm, Commun | mcation | Aigorithm | is, Battei | гу Раск Ва | arancing | | and fower Estilliation, I | 10111511641 | | | | <del>-</del> A | 717520 | | | Module 5 BMS in Electric Vehicles | Assignment | Problem<br>Solving | 6 Sessions | |-----------------------------------|------------|--------------------|------------| |-----------------------------------|------------|--------------------|------------| **Topics:** BMS in Electric Vehicles- Functions of BMS in EVs and HEVs, IoT-Based Battery Management System for EVs # **Targeted Application & Tools that can be used:** BMS is an integral part of smart phones, EVs and HEVs, Laptops etc. Software tools: Matlab/Simulink can be used to model and test BMS model. #### **TextBooks** - 1. Davide Andrea, "Battery management Systems for Large Lithium-Ion Battery Packs", Artech House, 2010. - 2. Battery Management Systems, Volume I: Battery Modeling by Gregory L. Plett #### References - 1. Iqbal Hussain, "Electric and Hybrid Vehicles-Design Fundamentals", CRC Press, Second Edition, 2011. - 2. Chris Mi, MA Masrur, and D W Gao, "Hybrid Electric Vehicles- Principles and Applications with Practical Perspectives", Wiley, 2011 - 3. Mehrdad Ehsani, Yimin Gao, Ali Emadi, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles; Fundamentals Theory and Design", Second Edition, CRC Press. ## **Online resources:** - 1. https://puniversity.informaticsglobal.com/openFullText.html?DP:2232/cgi-bin/koha/opac-detail.plbiblionumber=8072&query\_desc=kw%2Cwrdl%3A%20Electronic%20Devices%20and%20Circ uits - 2. https://www.coursera.org/learn/battery-management-systems - 3. https://www.youtube.com/watch?v=MZyY1dpka7c - 4. https://www.youtube.com/watch?v=jFMvphaEiJs **Topics relevant to "ENTREPRENEURIAL SKILLS"**: BMS in Electric Vehicles, Functions of BMS in EVs and HEVs, IoT-Based Battery Management Systems for EVs for developing **Entrepreneurial Skills** through **Problem Solving** methodologies. This is attained through assessment components mentioned in the course handout. **Topics relevant to "ENVIRONMENT AND SUSTAINABILITY"**: Battery cells, Lithium-ion cells, Battery Pack Balancing and Power Estimation. | Catalogue prepared | Ms. Ramya N | |----------------------------|--------------------------------------------------------------| | by | | | | | | Recommended by the | BoS No: 12 <sup>th</sup> BoS held on 27/7/21 | | <b>Board of Studies on</b> | | | Date of Approval by | 16 <sup>th</sup> Academic Council Meeting held on 23/10/2021 | | the Academic | | | Council | | (Established under the Presidency University Act, 2013 of the Karnataka Act 41 of 2013) ## [2022-23 EVEN/ WINTER SEMESTER] #### **COURSE HANDOUT** SCHOOL: Engineering DEPT: EEE DATE OF ISSUE:16-02-2023 NAME OF THE PROGRAM: B.Tech **P.R.C.APPROVAL REF.** : PU/AC-18.5/EEE15/EEE/2021-2025 SEMESTER/YEAR : IV/II COURSE TITLE & CODE : Battery Management Systems & EEE3036 COURSE CREDIT STRUCTURE :3-0-3 CONTACT HOURS : 3 periods per week COURSE IC : Mr. Sunil Kumar A V COURSE INSTRUCTOR(S) : Mr. Sunil Kumar A V COURSE URL : www.camu.in PROGRAM OUTCOMES : - PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. - PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. - PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. - PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. - PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. - PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. - PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. - PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. - PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. - PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. - PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. - PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change ## **COURSE PREREQUISITES:** NIL #### **COURSE DESCRIPTION:** This course will provide a firm foundation on the architecture and functioning of battery-management-system, how Lithium-ion batteries work and how to model their behaviors mathematically. It also gives an exposure to the role of battery management system in Electric Vehicles. The course is of analytic type which involves building the equivalent circuit models of batteries and learning various algorithms. The course develops analytical and problem-solving abilities. **COURSE OBJECTIVE:** The objective of the course is to familiarize the learners with the concepts of Battery Management Systems and attain **Entrepreneurial Skills** through **Problem Solving** methodologies. ## **COURSE OUTCOMES:** On successful completion of the course the students shall be able to: | | TABLE 1: COURSE OUTCOMES | | | | | | | | |--------------|-----------------------------------------------------------------------------------|-----------------------------|--|--|--|--|--|--| | CO<br>Number | CO | Expected<br>BLOOMS<br>LEVEL | | | | | | | | CO1 | Summarize the basic components and functionality of the Battery Management System | Comprehension | | | | | | | | CO2 | Discuss various requirements and topologies of Battery Management System | Comprehension | | | | | | | | CO3 | Explain various algorithms used in Battery Management System | Application | | | | | | | | CO4 | Describe the Battery Management System of Electric Vehicles. | Application | | | | | | | | CO5 | Describe the function of battery in electric vehicle application | Application | | | | | | | #### **MAPPING OF C.O. WITH P.O:** ## [H-HIGH, M-MODERATE, L-LOW] | | TABLE 2: CO PO MappingARTICULATION MATRIX | | | | | | | | | | | | |-----|-------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-------|-------|-------| | CO. | | | | | | | | | | | | | | No | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO 10 | PO 11 | PO 12 | | CO1 | Н | L | L | | Н | Н | M | L | | Н | L | L | | CO2 | L | M | M | | | | | | | L | M | M | | CO3 | Н | | | | | | | | | Н | | | | CO4 | Н | | | | | | | | | Н | | L | | CO5 | Н | L | Н | | L | | Н | | | | | M | ## **COURSE CONTENT (SYLLABUS):** # Module:1 ## **Introduction to Battery Management Systems** Topics: Introduction to Battery Management Systems (BMS), important terminology used to describe battery cells, Architecture of BMS, Classification of BMS, principles of operation of standard electrochemical battery cells. [06 Sessions][Blooms 'level selected: Comprehension] # Module 2 #### Lithium-ion cells Topics: Lithium-ion cells - Advantages of Lithium-ion cells over standard electrochemical battery cells, primary components of Lithium-ion cells, and their working. Equivalent circuit model Lithium – ion cells and the simulation [08 Sessions] [Blooms 'level selected: Comprehension] ## Module :3 ## **BMS** requirements & BMS Topologies Topics: BMS requirements - Requirements for sensing and high-voltage control, requirements for protection, interface, performance management, and diagnostics BMS Topologies - Distributed topology, modular topology and centralized topology [06Sessions] [Blooms 'level selected: Comprehension] REGISTRAR Registrar) # Module: 4 # Algorithms used in BMS Topics: Algorithms used in BMS - Cell Balancing Algorithm, Communication Algorithms Battery Pack Balancing and Power Estimation, numerical [8 Sessions] [Blooms 'level selected: Application] # Module: 5 # **BMS** in Electric Vehicles Topics: BMS in Electric Vehicles- Functions of BMS in EVs and HEVs, IoT-Based Battery Management System for EVs [6 Sessions] [Blooms 'level selected: Application] REGISTRAR # **DELIVERY PROCEDURE (PEDAGOGY):** | T | TABLE 3: SPECIAL DELIVERY METHOD/ PEDAGOGY PLANNED WITH TOPICS | | | | | | | | | | |-------|----------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|--|--|--|--| | S. No | Lecture<br>Number | Subtopic as per<br>lesson Plan | Pedagogy title/ short<br>explanation of adopted<br>pedagogy | ** At end of semester please update whether activity was done | | | | | | | | 1 | L-16 | Design of Lithium ion Battery Pack | Mathematic Model | Done | | | | | | | | 2 | L-22 | BMS Technology | Animation type of video<br>learning on BMS with<br>Quiz n BMS | Done | | | | | | | | | L-36 | Simulation model<br>on Cell Balancing | Self-learning: Students will be construct simulation model and submit the report, | Done | | | | | | | | 3 | | Develop a Different<br>parts of the BMS<br>using<br>MATLAB/Simulink | Participative Learning:<br>Students will be divided<br>into groups and task will<br>be given. | Done | | | | | | | | 4 | L-37 | BMS in EVs and<br>HEVs | Technology Enabled Learning: Video link will be played and students will be asked to answer the questionnaire. | Done | | | | | | | | 5 | L41 | Battery | Experiential Learning: | Not Done But | |---|-----|-------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------| | | | Manufacturing Industry visit. | Students will be taken to field visit and they are asked to submit the assignment. | Shown Industry<br>manufacturing process<br>Video in Class hours. | | | | | | | ## **REFERENCE MATERIALS:** ## **Text Book(s):** - 1. Davide Andrea, "Battery management Systems for Large Lithium-Ion Battery Packs", Artech House, 2010. - 2. Gregory L. Plett, "Battery Management Systems, Volume I: Battery Modeling", Artech House, 2015. ## **Reference book(s):** - 4. Iqbal Hussain, "Electric and Hybrid Vehicles-Design Fundamentals", CRC Press, Second Edition, 2011. - 5. Chris Mi, MA Masrur, and D W Gao, "Hybrid Electric Vehicles- Principles and Applications with Practical Perspectives", Wiley, 2011 - 6. Mehrdad Ehsani, Yimin Gao, Ali Emadi, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles; Fundamentals Theory and Design", Second Edition, CRC Press. #### **Online resources** - 1. https://www.youtube.com/watch?v=K4sHbvpH5N0&list=PLTkAyZQDGrLaIbPapiWv55MTUn8b3nkKY - 2. https://www.sciencedirect.com/science/article/pii/S2352484722005716 - 3. <a href="https://onlinelibrary.wiley.com/doi/10.1002/9781119682035.ch1">https://onlinelibrary.wiley.com/doi/10.1002/9781119682035.ch1</a> - 4. https://puniversity.informaticsglobal.com:2282/ehost/detail/vid=3&sid=15d54a1f-070b-4419-b1d2 # **SPECIFIC GUIDELINES TO STUDENTS:** - 1. Understand the importance of BMS for varies Application. - 2. Different types of Batteries and latest technologies. - 3. Refer to online videos in NPTEL and Battery University Documents. - 4. Follow up classes/lecture regularly. - 5. Practice the concept using simulink mode using Matlab/Simulink #### **COURSE SCHEDULE:** | | TABLE 4: COURSE BROAD SCHEDULE | | | | | | | | | | |------------|-----------------------------------|-----------------------------|-------------------------------|----------------------------|--|--|--|--|--|--| | Sl.<br>No. | ACTIVITY | PLANNED<br>STARTING<br>DATE | PLANNED<br>CONCLUDING<br>DATE | TOTAL NUMBER<br>OF PERIODS | | | | | | | | 01 | Programme/Course<br>Integration-1 | 17-2-2023 | 17-2-2023 | 01 | | | | | | | | 02 | Module :01 | 20-2-2023 | 10-3-2023 | 10 | | | | | | | | 03 | Module:02 | 13-03-2023 | 29-03-2023 | 10 | | | | | | | | | QUIZ (Online) | 31-03-2023 | 31-03-2023 | 01 | |----|------------------------------------------------------------------|------------|------------|----| | 04 | Mid Term | 12-04-2023 | 15-04-2023 | | | 05 | Mid TermEvaluation | 17-04-2023 | 17-04-2023 | 01 | | 06 | CourseIntegration-3 | 24-04-2023 | 24-04-2023 | | | 07 | Module:03 | 31-04-2023 | 21-05-2023 | 09 | | 08 | Module:04 | 24-04-2023 | 19-5-2023 | 11 | | | Develop a Different parts<br>of the BMS using<br>MATLAB/Simulink | 19-5-2023 | 19-5-2023 | 01 | | 09 | Module:05 | 22-05-2023 | 02-06-2023 | 06 | | | Field Visit | 31-05-2023 | 31-05-2023 | - | | 10 | EndtermExams | 7-06-2023 | 24-06-2023 | 03 | # DETAILED SCHEDULE OF INSTRUCTION: - 1) PPT+Chalk. - 2) Group Discussion by students. - 3) Participative learning by Simulink assignments - 4) Technology enabled learning. - 5) Problem based learning - 6)Experiential learning by field visit. | | TABLE 5: DETAILED COURSE SCHEDULE/ LESSON PLAN | | | | | | | | | | |------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------|----------|--|--|--|--|--|--| | Session no | TOPIC | Subtopic | CONumb | Referenc | | | | | | | | | | | er | e | | | | | | | | 1 | Programmeintegration-1 | Introduction and BMS functionality | CO1 | T1 | | | | | | | | 2 | Courseintergration-1 | Battery pack topology | CO1 | T1 | | | | | | | | 3 | Introduction to Battery Management Systems | BMS Functionality | CO1 | T1 | | | | | | | | 4 | Introduction to Battery Management Systems | BMS Functionality | CO1 | T1,R3 | | | | | | | | 5 | Introduction to Battery Management Systems | Requirement 1d: High-voltage contactor control Requirements 1e–f: Isolation sensing and thermal control | CO1 | Т1 | | | | | | | | 6 | Introduction to Battery<br>Management Systems | Thermal control Revision | CO1 | T1 | |----|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------| | 7 | Introduction to Battery Management Systems | Types of Batteries | CO1 | T1 | | 8 | Introduction to Battery Management Systems | Classification of Batteries | CO1 | T1 | | 9 | Introduction to Battery Management Systems | Parameters of Battries | CO1 | T1 | | 10 | Introduction to Battery Management Systems | Parameters of Battries | CO1 | T1 | | 11 | Lithium-ion cells | Advantages of Lithium-ion cells over standard electrochemical battery cells, | CO2 | T1 | | 12 | Lithium-ion cells | Modeling approach #1: Equivalent-circuit models, Equivalent-circuit models (ECMs), Physics-based models (PBMs) Modeling approach #1: Empirical | CO2 | T1 | | 13 | Lithium-ion cells | Simulation of lithium ion cells | CO2 | T1,R1,<br>R3 | | 14 | Lithium-ion cells | Simulation of lithium ion cells | CO2 | T1 | | 15 | Lithium-ion cells | Discussion of code for simulating battery packs | CO2 | T1 | | 16 | Lithium-ion cells | design of lithium ion battery pack | CO2 | T1 | | 17 | Lithium-ion cells | practice session on how to make battery pack | CO2 | T1 | | 16 | BMS requirements & BMS Topologies | BMS Development | CO3 | T1 | | 17 | BMS requirements & BMS Topologies | Current Sensor | CO3 | T1 | | 18 | BMS requirements & BMS Topologies | Current Sensor management, and diagnostics | CO3 | T1,R3 | | 19 | BMS requirements & BMS Topologies | requirements for protection, interface BMS Topologies | CO3 | T1 | | 20 | BMS requirements & BMS<br>Topologies | BMS Topologies | CO3 | T1 | | | DMC requirements 0- DMC | 4 | | | |----|-----------------------------------|------------------------------------------------------|-------|----------| | 21 | BMS requirements & BMS Topologies | distributed topology | CO3 | T1 | | 22 | BMS requirements & BMS Topologies | modular topolgy | CO3 | T1 | | 23 | BMS requirements & BMS Topologies | centralised topology | CO3 | T1 | | 17 | Algorithms used in BMS | Algorithms used in BMS - Cell<br>Balancing Algorithm | CO4 | Т1 | | 18 | Algorithms used in BMS | Algorithms used in BMS - Cell<br>Balancing Algorithm | CO4 | T1,R3 | | 19 | Algorithms used in BMS | Algorithms used in BMS - Cell<br>Balancing Algorithm | CO4 | T1,R3 | | 20 | Algorithms used in BMS | Communication Algorithms | CO4 | T1,R3 | | 21 | Algorithms used in BMS | Communication Algorithms | CO4 | T1,R3 | | 22 | Algorithms used in BMS | Communication Algorithms | CO4 | T1,R3 | | 23 | Algorithms used in BMS | Mid Term | CO4 | T1,R3 | | 24 | Algorithms used in BMS | Mid Term evaluation | CO4 | T1,R3 | | 25 | Algorithms used in BMS | Battery Pack Balancing and<br>Power Estimation | CO4 | T1,R3 | | 26 | Algorithms used in BMS | Battery Pack Balancing and<br>Power Estimation | CO4 | T1,R3 | | 27 | Algorithms used in BMS | Battery Pack Balancing and<br>Power Estimation | CO4 | T1,R3 | | 28 | Algorithms used in BMS | Battery Pack Balancing and<br>Power Estimation | CO3 | T1 | | 29 | Algorithms used in BMS | Battery Pack Balancing and<br>Power Estimation | CO3 | T1 | | 30 | Algorithms used in BMS | Battery Pack Balancing and<br>Power Estimation | CO3 | T1 | | 31 | Algorithms used in BMS | Battery Pack Balancing and<br>Power Estimation | CO3 | T1 | | | | | REGIS | TRAR Reg | | 32 | Algorithms used in BMS | Battery Pack Balancing and<br>Power Estimation | CO3 | T1 | |----|--------------------------|------------------------------------------------|-----|----| | 33 | Algorithms used in BMS | Battery Pack Balancing and<br>Power Estimation | CO3 | T1 | | 34 | BMS in Electric Vehicles | Functions of BMS in EVs and HEVs | CO5 | T1 | | 35 | BMS in Electric Vehicles | Functions of BMS in EVs and HEVs | CO5 | T1 | | 36 | BMS in Electric Vehicles | Functions of BMS in EVs and HEVs | CO5 | R2 | | 37 | BMS in Electric Vehicles | Program Integration | | | | 38 | BMS in Electric Vehicles | Application of BMS | CO5 | R2 | | 39 | BMS in Electric Vehicles | Program Integration | CO5 | R2 | | 40 | BMS in Electric Vehicles | IOT-Based battery management<br>System for EV | CO5 | R2 | | 41 | Field visit | Field visit | CO5 | R2 | | 42 | BMS in Electric Vehicles | IOT-Based battery management<br>System for EV | CO5 | R2 | **Topics relevant to "ENTREPRENEURIAL SKILLS"**: BMS in Electric Vehicles, Functions of BMS in EVs and HEVs, IoT-Based Battery Management Systems for EVs for developing **Entrepreneurial Skills** through **Problem Solving** methodologies . This is attained through the **Assignment** as mentioned in the assessment component. **Topics relevant to "ENVIRONMENT AND SUSTAINABILITY"**: Battery cells, Lithium-ion cells, Battery Pack Balancing and Power Estimation. # **ASSESSMENT SCHEDULE:** | | TABLE 6 ASSESSMENT SCHEDULE | | | | | | | | | | | |-----------|----------------------------------------------------|----------|----------------|-------------------|---------|------------|----------------|--|--|--|--| | Sl.n<br>o | Assessment type[Include here assessment method for | Contents | Course outcome | Duration In Hours | M<br>ar | Weight age | Venue,<br>DATE | | | | | | | self-learning component also] | | Number | In Hours | ks | | &TIME | | | | | | 1 | Assignment | Module-1 | CO-1 | 0.5 | 20 | 5% | 01.06.20 | | | | | | | | | | Hours | | au | 23 | | | | | | | Problem Solving | | | | | | | |---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|---------|-----|--------------------------------------------------| | 2 | Midterm | Module 1&2 | CO-1 &<br>CO-2 | 1.5Hours | 50 | 25% | 15.04.20<br>23 | | 3 | Assignment on Simulink<br>Model Development | Module-2 and<br>Module-3 | CO-<br>2&CO-3 | 8 Hours | 10 | 10% | 02.06.20<br>23 | | 4 | Review of digital / e-resources from Pres. Univ. link given in the References Section -(Mandatory to submit the screenshot of accessing digital resource. Otherwise it will not be evaluated) | https://.puniver sityinformatics global.com/log in?qurl=https:/ /search.ebscoh ost.com%2flog in.aspx%3fdire ct%3dtrue%26 db%3dnlebk% 26AN%3d122 3875%26site% 3dehost- live%26ebv% 3dEB%26ppid %3dpp_xiii | CO-3 | | 10 | 5% | Will be announc ed one week prior to Submiss ion | | 5 | Field Visit | Module-5 | CO-4 | | 10 | 5% | | | 6 | Endterm examination | Module1 to<br>Module-4 | CO-1 to | 3 hours | 10<br>0 | 50% | | # **COURSE CLEARANCE CRITERIA:** "AS PER ACADEMICREGULATIONS OF THE UNIVERSITY" https://presidencyuniversity.in/academic-regulations/ # **MAKEUP EXAM POLICY:** "AS PER ACADEMICREGULATIONS OF THE UNIVERSITY") # CONTACT TIMINGS IN THE CHAMBER FOR ANY DISCUSSIONS: # SAMPLE THOUGHT PROVOKING QUESTIONS: | SL | QUESTION | MARKS | COURSE | BLOOM'S | |----|------------------------------------------------------|-------|---------|---------------| | NO | | | OUTCOME | LEVEL | | | | | NO. | | | | | | | | | 1. | A cell is different from a battery, but many | 8 | CO1 | Comprehension | | | people (including me at times!) use the term | | | | | | "battery" to describe any electrochemical | | | | | | energy source, even if it is a single cell, and this | | | | | | can lead to confusion. A battery constructed from three 3 V, 20 Ah cells in series. Comment on the nominal voltage, nominal capacity and nominal energy capacity of the battery. | | | | |----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|---------------| | 2. | Specific energy and energy density measure the maximum stored energy per unit weight or volume (respectively). For a given weight, higher specific energy stores more energy. For a given storage capacity, higher specific energy cells are lighter. For a given storage capacity, higher energy density cells are smaller. In that context explain the advantages of Li-ion cells. | 8 | CO1 | Comprehension | | 3. | Due to the limitations found on commercial available BMSs it was decided to develop a new BMS module from the scratch using available blocks from main IC manufacturers and add the required "intelligence" and flexibility to test different charge, discharge, cell balancing and parameter estimation algorithms. In that context discuss about all the preliminary requirements of BMS. | 10 | CO2 | Comprehension | | 4. | Cell balancing is the process of equalizing the voltages and state of charge among the cells when they are at a full charge. No two cells are identical. There are always slight differences in the state of charge, self-discharge rate, capacity, impedance, and temperature characteristics. Referring to the above context, discuss the flowchart of cell balancing | 8 | C03 | Comprehension | | 5. | Even the best battery cells will fail if they are abused. Bad things to do to a cell include (internal) overcharge, undercharge, overtemperature. Several possible failure modes associated with complete cell breakdown; rarely possible to predict which will occur. Explain all the failure modes associated with that of a battery | 8 | C04 | Comprehension | # TARGET SET FOR COURSE OUTCOME ATTAINMENT: | TABLE 8: TARGET SET FOR ATTAINMENT OF EACH CO and ATTAINMENT ANALYSIS | | | | | | | | | |-----------------------------------------------------------------------|------|----------|------------|-----|------------|------|-----------------------|--| | Sl.no | C.O. | Course | Target set | for | Actual | C.O. | Remarks on attainment | | | | No. | Outcomes | attainment | in | Attainment | in | & measures to enhance | | | | | | percentage | | Percentage | | the attainment | | | | | | | | | | WCY UV | | | 01 | C01 | Summarize the basic components and functionality of the Battery Management System | 60% | The students are new to the course, and it took time to understand the topic. | |----|-----|-----------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------| | 02 | C02 | Discuss various requirements and topologies of Battery Management System. | 50% | Desired attainment is achieved | | 03 | CO3 | Explain<br>various<br>algorithms<br>used in Battery<br>Management<br>System | 60% | Desired attainment is achieved | | 04 | CO4 | Describe the Battery Management System of Electric Vehicles. | 60% | Desired attainment is achieved | | 05 | CO5 | Describe the function of battery in electric vehicle application. | 55% | Desired attainment is achieved | # **AFTER RESULTS** | Sl.no | C.O. | <b>Course Outcomes</b> | Threshold | Target set | Actual | Remarks | |-------|------|------------------------|-------------|------------|------------|------------| | | No. | | Set for the | for | C.O. | on | | | | | CO | attainment | Attainment | attainment | | | | | | in | | &Measures | | | | | | percentage | In | to enhance | | | | | | | Percentage | the | | | | | | | * | attainment | | | | | | | | | | | | | | | 6 | * | | 01 | CO1 | Summarize the basic components and functionality of the Battery Management System | 50% | 60% | |----|-----|-----------------------------------------------------------------------------------|-----|-----| | 02 | CO2 | Discuss various requirements<br>and topologies of Battery<br>Management System | 60% | 60% | | 03 | CO3 | Explain various algorithms used in Battery Management System | 55% | 50% | | 04 | CO4 | Describe the Battery<br>Management System of<br>Electric Vehicles. | 60% | 60% | | 05 | CO5 | Describe the function of battery in electric vehicle application. | 60% | 60% | Signature of the course Instructor In-Charge (s) # APPROVAL: This course has been duly verified Approved by the D.A.C. Signature of the Chairperson D.A.C. Name and signature of the Instructor In-Charge (s): Name and signature of the DAC Chairperson: | Course Code: | Course Title: Electric | | | | | | | | | |-----------------|----------------------------------------------------------------------|-----------------------|------------------|-----------------|-------|--------|--------|-------|--| | EEE1005 | Technology | | | L- T-P- C | 3 | 0 | 0 | 3 | | | | Type of Course: Open | eory only | | | | | | | | | Version No. | 1.0 | | | | | | | | | | Course Pre- | NIL | | | | | | | | | | requisites | | | | | | | | | | | Anti-requisites | NIL | | | | | | | | | | Course | The Course is designed | with an objective | of giving an c | verview of E | lectr | ic V | /ehi | icles | | | Description | and battery technology. | 3 | 0 0 | | | | | | | | - | vehicles and the electric | | | | | | | | | | | analytical in nature and | | | | | - | | | | | | course develops the criti | | = | | P | | | | | | Course | The objective of the course | | • | | Elect | tric ' | Veh | icle | | | objective | & Battery Technology | | | | | | | | | | | methodologies. | | | | | | | | | | Course | On successful completic | on of this course the | he students sha | all be able to: | | | | | | | Outcomes | | | | | | | | | | | | 1. Explain the working of Electric Vehicles and recent trends | | | | | | | | | | | 2. Explain the working of Hybrid Electric Vehicles and recent trends | | | | | | | | | | | 3. Describe about the battery characteristic & parameters. | | | | | | | | | | | 4. Summarize the impor | tance of battery n | nanagement sy | stem. | | | | | | | Course | | | | | | | | | | | Content: | | T | T | | | 1 | | | | | Module 1 | Electric Vehicles | Assignment | _ | on and Data | | 11 | | | | | | | | Analysis | | | Se | SSIC | ons | | | Topics: | | | | 0 | | | | | | | | tric vehicles, Configurati | | | | | | | | | | , | ve effort and Transmission | on requirement, V | ehicle perform | nance, Tractiv | e eff | ort | ın | | | | | Energy consumption. | | - In | | | 4.0 | | | | | Module 2 | Hybrid | Case Study | Data collec | ction and Ana | lysis | | | | | | | Electric Vehicles | | | | | Se | SS10 | ons | | | Topics: | | | | D : T : | a | | | | | | | brid Electric Drive Trains | | • | c Drive Train | s, Se | ries | | | | | | Drive Trains, Parallel hy | | | | | 1 1 | | | | | Module 3 | Energy storage for EV | Assignment | Any energy | y storage devi | ce | 11 | | | | | | and | | | | | 56 | essi | ons | | | T. | HEV | | | | | | | | | | Topics: | na svinamanta. Dattaman | nomentana Tamas | of Dottorios M | adallina of D | . * * | E | 1 | | | | " | requirements, Battery pa | • • | of Batteries, M | odening of b | aller | у, г | uei | | | | | ciple and operation, Type | 1 | Casa strude | | | 12 | | | | | Module 4 | Battery Management | Assignment | Case study | | | 12 | | onc | | | Tonios | Systems (BMS | | | | | se | 8810 | ons | | | Topics: | Battery Management Syste | ome (RMS) import | tant terminology | rused to descr | iho h | atta | erro e | ചിച | | | | BMS. Classification of BMS | | •• | | | | • | | | REGISTRAR REgistrar # Targeted Application & Tools that can be used: Application: Automotive industry. Software tools: Matlab-Simulink ## **Text Book** - 1. Mehrdad Ehsani, YiminGao, sebastien E. Gay and Ali Emadi, —Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design CRC Press, 2009. - 2. Iqbal Husain, —Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2011. #### References - 1. James Larminie and John Loury, —Electric Vehicle Technology-Explainedl, John Wiley & Sons Ltd., 2003. - 2.C.C. Chan and K.T. Chanu Modern Electric Vehicle Technology, OXFORD University, 2011 - 3.Sheldon S. Williamson,- Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles, Springer, 2013 - 4. Chris Mi, M. A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2011. ## **Online resources:** - 1. <a href="https://nptel.ac.in/courses/108/102/108102121/">https://nptel.ac.in/courses/108/102/108102121/</a> - 2. https://nptel.ac.in/courses/108/106/108106170/ - 3. Text book of Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, Infrastructure and the Market, Gianfranco Pistoia, 1st ed. Amsterdam: Elsevier. 2010 https://puniversity.informaticsglobal.com:2284/ehost/detail/vid=0&sid=52da4e6e-8813-45d5-87f9-73b9f493f358%40redis&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#AN=342445&db=nlebk - 4. Seminar <a href="https://puniversity.informaticsglobal.com:2069/search/searchresult.jsp?newsearch=true&queryText=electric%20vehicles">https://puniversity.informaticsglobal.com:2069/search/searchresult.jsp?newsearch=true&queryText=electric%20vehicles</a> - 5. Case Study: Data collection/Quiz based on the basics of batteries and the characteristics of energy storage devices used in EVs. Topics relevant to "ENTREPRENEURIAL SKILLS": Vehicle fundamentals, total tractive effort and design of drive train for different vehicle architectures for developing Entrepreneurial Skills through Problem Solving methodologies. This is attained through assessment component mentioned in course handout. Topics relevant to "ENVIRONMENT AND SUSTAINABILITY": Types of Batteries, Materials of battery used, Fuel cell. | Catalogue | Mr. K Sreekanth Reddy | |--------------------|-------------------------------------------------------------| | prepared by | | | Recommended | BoS No:14 <sup>th</sup> BoS held on 22/2/2022 | | by the Board | | | of Studies on | | | Date of | 18 <sup>th</sup> Academic Council meeting held on 03/8/2022 | | <b>Approval by</b> | | | the Academic | | | Council | | (Established under the Presidency University Act, 2013 of the Karnataka Act 41 of 2013) ## A-2[2020] COURSE HAND OUT SCHOOL: Engineering DEPT.: EEE DATE OF ISSUE: 23/03/2022 NAME OF THE PROGRAM : B.TECH P.R.C. APPROVAL REF. : PU/AC-16/EEE/2020-2024/2021 SEMESTER/YEAR : IV / 2<sup>nd</sup> COURSE TITLE & CODE : Electric Vehicles and Battery Technology & EEE1005 COURSE CREDIT STRUCTURE : 3-0-0-3 CONTACT HOURS : 3 (Mon 5<sup>th</sup> hr, Wed 6<sup>th</sup> hr, Fri 7<sup>th</sup> hr) COURSE INSTRUCTOR : Mr. K Sreekanth Reddy COURSE URL : https://www.edhitch.com #### **PROGRAM OUTCOMES:** Graduates of the B.Tech. Program in Electrical and Electronics Engineering will be able to: PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. (H) PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.(H) PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. **PO4.** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.(L) **PO6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. **PO7.** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. **PO8.** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. **PO9.** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.(L) **PO11.** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.[L] ## **COURSE PREREQUISITES: NIL** #### **COURSE DESCRIPTION:** The Course is designed with an objective of giving an overview of Electric Vehicles and battery technology. The Course discusses the history, configurations of Electric vehicles and the electrical characteristics of batteries. The Course is conceptual and analytical in nature and needs fair knowledge of mathematical computation. The course develops the critical thinking and analytical skills. # **COURSE OBJECTIVES:** The objective of the course is to familiarize the learners with the concepts of Electric Vehicles & Battery Technology and attain Entrepreneurial Skills through Problem Solving methodologies. **COURSE OUTCOMES:** On successful completion of the course the students shall be able to: - 1. Explain the working of Electric Vehicles and recent trends - 2. Explain the working of Hybrid Electric Vehicles and recent trends - 3. Describe about the battery characteristics & parameters. - 4. Summarize the importance of battery management system. # MAPPING OF C.O. WITH P.O. : [H-HIGH, M- MODERATE, L-LOW] | C.O.NO. | P.O.01 | P.O.02 | P.O.05 | P.O.10 | P.O.12 | |---------|--------|--------|--------|--------|--------| | 1 | Н | Н | | | L | | 2 | н | н | | | L | | 3 | Н | M | L | L | | | 4 | M | M | L | L | L | #### **COURSE CONTENT (SYLLABUS):** #### **MODULE: 1: ELECTRIC VEHICLES** History of Electric vehicles, Configuration of Electric Vehicles, Performance of Electric Vehicles, Tractive effort and Transmission requirement, Vehicle performance, Tractive effort in normal driving, Energy consumption. [10-Hrs] [Blooms 'level selected: Comprehension] #### **MODULE: 2: HYBRID ELECTRIC VEHICLES** Concept of Hybrid Electric Drive Trains, Architecture of Hybrid Electric Drive Trains, Series Hybrid Electric Drive Trains, Parallel hybrid electric drive trains. [8-Hrs] [Blooms 'level selected: Comprehension] #### **MODULE: 3: ENERGY STORAGE FOR EV AND HEVS** Energy storage requirements, Battery parameters, Types of Batteries, Modelling of Battery, Fuel Cell basic principle and operation, Types of Fuel Cells.[10-Hrs] [Blooms 'level selected: Knowledge] # **MODULE: 4: BATTERY MANAGEMENT SYSTEMS (BMS)** Introduction to Battery Management Systems (BMS), important terminology used to describe battery cells, Architecture of BMS, Classification of BMS, principles of operation of standard electrochemical battery cells. [8-Hrs] [Blooms 'level selected: Comprehension] #### **DELIVERY PROCEDURE (PEDAGOGY):** # **Topics for Self-Learning:** - 9. Selection of wires for EVs. - 10. Different types of batteries that are used in EVs. # **Experiential Learning Topics:** - 5. Vehicle dynamics using MATLAB Simulink - 6. SOC Modelling of Battery using MATLAB #### Note: - 8. All the Topics will be covered through **Lecture Method.** - **I.** E-materials: - II. Text book of Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, Infrastructure and the Market, Gianfranco Pistoia, 1st ed. Amsterdam: Elsevier. 2010 https://puniversity.informaticsglobal.com:2284/ehost/detail/vid=0&sid=52da4e6e- 8813-45d5-87f9-73b9f493f358%40redis&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#AN=342445&db=nl ebk - III. Seminar - a. <a href="https://puniversity.informaticsglobal.com:2069/search/searchresult.jsp?newsearch=true&queryText=electric%20vehicles">https://puniversity.informaticsglobal.com:2069/search/searchresult.jsp?newsearch=true&queryText=electric%20vehicles</a> - IV. Case Study: Data collection/Quiz bas - a. <a href="https://nptel.ac.in/courses/108/102/108102121/">https://nptel.ac.in/courses/108/102/108102121/</a> - b. https://nptel.ac.in/courses/108/106/108106170/ - c. https://www.coursera.org/learn/electric-vehicles-mobility #### **REFERENCE MATERIALS:** **Textbooks:** - **T1:** Mehrdad Ehsani, YiminGao, sebastien E. Gay and Ali Emadi, —Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Designl, CRC Press, 2009. - **T2:** Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2011.2<sup>nd</sup> edition. ## **Reference book(s):** - 1. James Larminie and John Loury, —Electric Vehicle Technology-Explainedl, John Wiley & Sons Ltd., 2003, Second Edition. - 2.C.C. Chan and K.T. Chanu Modern Electric Vehicle Technology, OXFORD University, 2011 - 3.Sheldon S. Williamson,- Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles, Springer,2013 - 4. Chris Mi, M. A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2011, Second Edition ## Other resources: <u>IEEE Explore - School of Engineering</u> https://puniversity.informaticsglobal.com/login . # **GUIDELINES TO STUDENTS: (Here mention a few tips to study this course effectively)** - The students are advised to be very much regular to the classes and sincerely attempt the learnings listed in the Pedagogical section. - The students are advised to take down the notes legibly which serves as a firsthand information to study and revise lecture topics on day to day basis. - The students are advised to visit the Edhitch portal and Microsoft teams on a regular basis to study the supporting materials shared by the course instructors. - The students are advised to use the journals, technical magazines and other relevant materials. - The students are advised to watch the video lectures available online to understand and review the concepts delivered in the class as well as problems assigned for self-learning topics. COURSE SCHEDULE: (This is a macro level planning. Mention the unit wise expected starting and ending dates along with the tests/assignments/quiz and any other activities) [allot about 75% for delivary, about 10 to 12% for Evaluation Discussion, about 10 to 15% on integrating the learning Modules within the course and to the program] | Sl. No. | ACTIVITY | STARTING | CONCLUDING | TOTAL NUMBER OF | |---------|------------------------------------------------|------------|------------|-----------------| | | | DATE | DATE | PERIODS | | 01 | Program integration Over<br>View of the course | 23-03-2022 | 25-03-2022 | 02 | | 02 | Module: 01 | 28-03-2022 | 8-04-2022 | 06 | | 03 | Integration of module 2 | 11-4-2022 | 11-4-2022 | 01 | | 04 | Module: 02 | 13-04-2022 | 13-05-2022 | 08 | | 05 | Test-1 | 18-04-2022 | 20-04-2022 | NA | | 06 | Test-1 Paper Discussion | 22-04-2022 | 22-04-2022 | 01 | | 07 | Module: 02 | 25-04-2022 | 13-05-2022 | | | 08 | Course Integration of | 16-05-2022 | 16-05-2022 | 01 | |----|-----------------------------|--------------------------|------------|----------------| | | Module:3 | | | | | | | | | | | 09 | Module:03 | 18-05-2022 | 6-6-2022 | 6 | | 10 | Test-II | 23-05-2022 | 26-05-2022 | NA | | 11 | Discussion of Test-2 paper | 27-05-2022 | 27-05-2022 | 01 | | 12 | Module:03 | 30-05-2022 | 6-06-2022 | | | 13 | Case Study / Mini Project | 31/3/2022 | 02/6/2022 | NA | | 14 | Module 4 Course Integration | 08-06-2022 | 17-06-2022 | 05 | | 15 | Program integration | 20/06/2022 | 20/6/2022 | | | 16 | Quiz | May 1 <sup>st</sup> week | | 01 Extra class | | | | | | | # **SCHEDULE OF INSTRUCTION:** # **MODULE: 1: ELECTRIC VEHICLES** | SI.<br>no | Session no | Lesson Title | Topics | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |-----------|------------------|----------------------------------------|-------------------------------------------------------------------|-----------------------------|------------------|-----------| | 1 | S1<br>23/3/2022 | Program<br>Integration | | | | | | 2 | S2<br>25/3/2022 | Course<br>Integration | Introduction to course | | | | | 3 | S 3<br>28/3/2022 | History of<br>Modern<br>Transportation | History of hybrid electric,<br>electric and fuel cell<br>vehicles | CO. 1 | Lecture<br>Mode | T1:Ch.1 | | 4 | S4<br>30-3-2022 | Environmental<br>Impact | History of hybrid electric,<br>electric and fuel cell<br>vehicles | CO. 1 | Lecture<br>Mode | T1:Ch.1 | | 5 | S5<br>1-4-2022 | Electric<br>Vehicles | Configurations of EVs | CO. 1 | Lecture<br>Mode | T1:Ch.5.1 | | 6 | S6<br>4-4-2022 | | Performance of<br>Electric<br>Vehicles,Tractive<br>effort | CO. 1 | Lecture<br>Mode | T1:Ch. 5.2 | |----|------------------|---------------------|-----------------------------------------------------------|-------|-----------------|---------------------| | 7 | S7<br>6-4-2022 | Vehicle<br>Dynamics | Transmission requirement, Vehicle performance, | CO. 1 | Lecture<br>Mode | T1:Ch.2 | | 8 | S8<br>8-4-2022 | | Tractive effort in normal driving, | CO. 1 | Lecture<br>Mode | T1:Ch.5.3 | | 9 | S9<br>11-4-2022 | | Energy Consumption, range of the vehicle | CO. 1 | Lecture<br>Mode | Technical<br>Papers | | 10 | S10<br>13-4-2022 | | Problem solving | | | | | | | | Vehicle dynamics using MATLAB Simulink | | | | | | | 1 | Module 1 is completed | | <u>I</u> | | # **MODULE: 2: HYBRID ELECTRIC VEHICLES** | SI.<br>no | Session no | Lesson Title | Topics | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |-----------|------------------|-----------------------|------------------------------------------|-----------------------------|------------------|-----------| | 1 | S11<br>22-4-2022 | | Test-1 Paper discussion | | | | | 2 | S12<br>25-4-2022 | Course<br>Integration | Course Integration | CO. 2 | Lecture<br>Mode | T1:Ch.6.1 | | 3 | S13<br>27-4-2022 | HEV | Concept of Hybrid Electric Drive Trains, | CO. 2 | Lecture<br>Mode | T1:Ch.6.2 | | | S14<br>29-4-2022 | | Architecture of Hybrid Electric Drive Trains, | | | | |---|-----------------------|----|-----------------------------------------------|-------|-----------------|-------------------------------------------------------------| | 4 | S15<br>4-5-2022 | | Series Hybrid Electric<br>Drive Trains | CO. 2 | Lecture<br>Mode | T1:Ch.6.2 | | | Self Learning Topic | \$ | Selection of wires for EVs. | | | IEEE Explore - School of Engineering | | | | | | | | https://puniv<br>ersity.informa<br>ticsglobal.co<br>m/login | | 5 | S16<br>6-5-2022 | | Series Hybrid Electric<br>Drive Trains | CO. 2 | Lecture<br>Mode | T1:Ch.6.2 | | 6 | S17<br>9-5-2022 | | Parallel hybrid electric drive trains | CO. 2 | Lecture<br>Mode | T1:Ch.6.2 | | 7 | S18<br>11-05-2022 | 1 | Recent trends in EVs | CO. 2 | Lecture<br>Mode | Technical papers | | | Module 2 is completed | | | | | | # **MODULE: 3: ENERGY STORAGE FOR EVS AND HEVS** | SI.<br>no | Session no | Lesson Title | Topics | | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |-----------|------------------|----------------|---------------------|---------|-----------------------------|------------------|------------------| | 1 | S19<br>13-5-2022 | Module 3 | Course Integration | | | | | | 2 | S19<br>16-5-2022 | Energy storage | Energy requirements | storage | CO. 3 | Lecture<br>Mode | Technical papers | | 3 | S20 | Battery and its | Battery parameters | CO. 3 | Lecture | T1.Ch.13 | |---|-----------|-----------------|------------------------------------|-------|-----------------|-------------| | 3 | 18-5-2022 | characteristics | | CO. 3 | Mode | | | 4 | S21 | | Types of Batteries | CO. 3 | Lecture<br>Mode | T1.Ch.13 | | | 20-5-22 | | | | | | | 5 | S22 | | Test-2 paper Discussion | | | | | | 27-5-2022 | | | | | | | 6 | S23 | | Modelling of Battery | CO. 3 | Lecture<br>Mode | Technical | | | 30-5-2022 | | | 20.3 | Wiode | papers | | 7 | S24 | | Modelling of Battery | CO. 3 | Lecture<br>Mode | Technical | | | 1-06-2022 | | | | Wiode | papers | | 7 | S25 | Fuel Cell | Fuel Cell basic principle | CO. 3 | Lecture<br>Mode | Technical | | , | 3-6-2022 | Tuer cen | and operation | CO. 3 | Mode | papers | | 9 | S26 | | Types of Fuel Cells | CO. 3 | Lecture<br>Mode | T1.Ch.15.1 | | | 6-6-2022 | | | 20.3 | Wiode | 11.011.13.1 | | | | | SOC | CO. 3 | | T1.Ch.15.2 | | | | | Case study/Mini project submission | | | | Module 3 is completed # **MODULE: 4: POWER CONVERTERS FOR BATTERY CHARGING** | SI. | Session no | Lesson Title | Topics | Course | Delivery | Reference | |-----|------------|--------------|-------------------------|---------|----------|-----------| | no | | | | Outcome | Mode | | | | | | | Number | | | | | S27 | Course | Introduction to Battery | | Lecture | | | | 521 | | | GO 4 | | Technical | | 1 | 8-6-2022 | Integration | Management Systems | CO .4 | Mode | papers | | | | | (BMS) | | | | | | | | | | | 10. | | 2 | S28<br>10-6-2022 | important terminology<br>used to describe battery<br>cells | CO .4 | Lecture<br>Mode | Technical papers | |---|---------------------|--------------------------------------------------------------------|-----------------------------|-----------------|------------------------------------------------------------------------------------------| | 3 | S29<br>13-6-2022 | Architecture of BMS | CO .4 | Lecture<br>Mode | Technical papers | | 4 | S30<br>15-6-2022 | Classification of BMS | Classification of BMS CO .4 | | Technical papers | | | Self Learning Topic | Different types of batteries that are used in EVs. | | | LEEE Explore - School of Engineering https://puniv ersity.inform aticsglobal.co m/login | | 5 | S31<br>17-6-2022 | principles of operation of standard electrochemical battery cells. | CO .4 | Lecture<br>Mode | Technical papers | | 6 | S32<br>20-6-2022 | Program Integration | | Lecture<br>Mode | | | | | Module 4 is comple | leted | | | Topics relevant to "ENTREPRENEURIAL SKILLS": Vehicle fundamentals, total tractive effort and design of drive train for different vehicle architectures for developing Entrepreneurial Skills through Problem Solving methodologies. This is attained through Assignment as mentioned in the assessment component. **Topics relevant to "ENVIRONMENT AND SUSTAINABILITY":** Types of Batteries, Materials of battery used, Fuel cell. # **ASSESSMENT SCHEDULE:** | Sl.no | Assessment | contents | Course | Duration | marks | weightage | Venue, | |-------|-------------------|----------|---------|----------|-------|-----------|--------| | | type[Include here | | outcome | | | | DATE | | | assessment | | | In Hours | | | &TIME | | | method for self- | | Number | | | | | | | learning | | | | | | | | | component also] | | | | | | | | | | | | | | | | | 1 | Assignment Problem Solving | Topic can be<br>selected from any<br>Module | CO 1 and<br>CO 4 | - | 20 | 10% | 4 <sup>th</sup> Week of<br>May 2022 | |---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------|-------|-----|-----|-------------------------------------| | 2 | Test 1 | Module-1 | CO1 | 1 hr | 30 | 15% | 18-04-2022<br>to 20-04-<br>2022 | | 3 | Test 2 | Module-2&3 | CO2 | 1 hr | 30 | 15% | 23-05-2022<br>to 26-05-<br>2022 | | 4 | Assignement as self Learning topics Review of digital/e- resources from Pres. Univ.link given in the references section (Mandatory to submit the screenshots of accessing digital Resource. Otherwise it will not be evaluated | Mentioned | CO3 | - | 20 | 10% | 1 <sup>st</sup> Week of<br>May 2022 | | 5 | End Term Final<br>Examination | Module-1,2,3 & 4 | CO1-CO4 | 3 hrs | 100 | 50% | 27-06-2022<br>to 09-07-<br>2022 | COURSE CLEARANCE CRITERIA: (Here mention the minimum requirements of attendance, marks in continuous assessment &term end examination, make up exam policy and other details as per the academic regulations & PRC): - Minimum of 75% Attendance is must to take up examination. - Minimum of 40% score is must in internal assessment. - Minimum of 30% in the Final Examination. - Minimum of 40% AGGREGATE is must combining continuous assessment and End Term Final Examination. - Make up policy is applicable only as per academic regulation - There will be no make-up for ASSIGNMENT and QUIZ. ## **MAKEUP POLICY:** If the student misses an evaluation component, he/she may be granted a make-up. In case of an absence that is foreseen, make-up request should be personally made to the Instructor-in-Charge, well ahead of the scheduled evaluation component. Reasons for unanticipated absence that qualify a student to apply for make-up include medical emergencies or personal exigencies. In such an event, the student should contact the Instructor-in-Charge as soon as practically possible. # CONTACT TIMINGS IN THE CHAMBER FOR ANY DISCUSSIONS: Interested students may contact the Instructor In-charge during the student free Hour and Wednesday, 3:00-4:00 pm to clear doubts. # SAMPLE THOUGHT PROVOKING QUESTIONS: (Here type sample typical questions for students 'reference) | SL<br>NO | QUESTION | MARKS | COURSE<br>OUTCOME NO. | BLOOM'S LEVEL | |----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|---------------| | 1 | Compare the performance of following vehicle configurations a. Series HEV b. Parallel HEV c. Seriesparallel HEV d. Pure EV Give the name of the vehicle in the market corresponding to the above configurations. | 8 + 4 | 2 | Comprehension | | 2 | Draw the different configurations of drivetrains in electric vehicles. Briefly explain each configuration. | 10 | 1 | Comprehension | | 3 | what are the different forces acting on the electric Two-wheeler moving on a flat road with a velocity of V m/sec. (assume necessary data related to vehicle model and road profile) | 10 | 1 | Comprehension | | 4 | Name different types of energy sources used in electric vehicles and explain how to size the power supply for any given direct drive electric two or three wheelers? | 10 | 3 | Knowledge | | 5 | Why an energy management control system is required in an HEV? Do you think an elaborate energy management system similar to that applied to a hybrid vehicle, is required in an electric vehicle? Explain. | 10 | 4 | Comprehension | # Target set for course Outcome attainment: | attainment | in | |------------|----| | percentage | | | | | | | | | 50 | | | 30 | | | | 50 | | 02 | Co2 | Explain the working of Hybrid Electric Vehicles and recent | 50 | |----|-----|------------------------------------------------------------|----| | | | trends | | | | | | | | 03 | Co3 | Describe about the battery characteristic & parameters | 65 | | 04 | Co4 | Summarize the importance of battery management system | 60 | Signature of the course Instructor This course has been duly verified Approved by the D.A.C. Make Signature of the Chairperson D.A.C. # Course Completion Remarks & Self-Assessment.[This has to be filled after the completion of the course] [Please mention about the course coverage details w.r.t. the schedule prepared and implemented. Any specific suggestions to incorporate in the course content. Any Innovative practices followed and its experience. Any specific suggestions from the students about the content, Delivery, Evaluation etc.] | Sl.no. | Activity As listed in the course Schedule | Scheduled<br>Completion Date | Actual<br>Completion<br>Date | Remarks | |--------|---------------------------------------------|------------------------------|------------------------------|---------------------------------| | 01 | Program integration Over View of the course | 25-03-2022 | | 02 | | 02 | Module: 01 | 8-04-2022 | | 06 | | 03 | Integration of module 2 | 11-4-2022 | | 01 | | 04 | Module: 02 | 13-05-2022 | | 08 | | 05 | Test-1 | 20-04-2022 | 28-04-2022 | Test-1 got postponed by 1 week. | | 06 | Test-1 Paper<br>Discussion | 22-04-2022 | 30-04-2022 | Because of test postponement. | | 07 | Module: 02 | 13-05-2022 | 17-05-2022 | Because of solving some more examples related to design parameters based on students request | |----|--------------------------------|------------|------------|------------------------------------------------------------------------------------------------------| | 08 | Course Integration of Module:3 | 16-05-2022 | 19-05-2022 | As one class delayed in module 2 and it followed the same. | | 09 | Module:03 | 6-6-2022 | 9-6-2022 | Because of getting one additional class as a adjustment of EEE212 course it covered as per the plan. | | 10 | Test-II | 26-05-2022 | 03-06-2022 | Test-2 got postponed by 1 week. | | 11 | Discussion of Test-2 paper | 27-05-2022 | 04-06-2022 | | | 12 | Module:03 | 6-06-2022 | | | | 13 | Case Study / Mini<br>Project | 02/6/2022 | | | | 14 | Module 4 Course Integration | 17-06-2022 | 17-06-2022 | 2 extra classes got because of working<br>Saturdays and could able to cover it | | 15 | Program integration | 20/6/2022 | 20/6/2022 | | Any specific suggestion/Observations on content/coverage/pedagogical methods used etc.: These course students should not study the DE: EEE3027 because 50% of the syllabus is same. # Course Outcome Attainment: | Sl.no | C.O. | Course Outcomes | Target set | for | Actual C.O. | Remarks on | |-------|------|------------------------------------------------|---------------|-----|---------------|-------------------------------------| | | No. | | attainment in | | Attainment | attainment | | | | | percentage | | In Percentage | &Measures to enhance the attainment | | 01 | Co1 | F 1: 4 1: 6 | 50 | | 44 | As it was sudden | | | | Explain the working of | | | | offline exam and | | | | Electric Vehicles and | | | | didn't practice | | | | recent trends | | | | the topics. | | 02 | Co2 | Explain the working of | 50 | | 53 | As expected. | | | | Hybrid Electric Vehicles | | | | | | | | and recent trends | | | | | | 03 | Co3 | Describe about the battery | 60 | | 62 | As expected. | | | | characteristic & | | | | • | | | | parameters | | | | | | 04 | Co4 | Summariza the importance | 60 | | 63 | As Expected | | 04 | C04 | Summarize the importance of battery management | 00 | | 03 | As Expected. | | | | | | | | | | | | system | | | | | Signature of the course Instructor This course has been duly verified Approved by the D.A.C. Habo Signature of the Chairperson D.A.C. | Course Code:<br>EEE3011 | Course Title: Testing and Electrical Equipment's. Type of Course: 1]. Discipl 2]. Theory only | | ng of | L-T-P-C | 3 | 0 | | 3 | | |-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------|--------------------------------|-------------|-------|-------------|-------|--| | Version No. | 2.0 | | | | | | | | | | Course Pre-<br>requisites | Electric Power Generation, Transmission and Distribution Switchgear and Protection Electrical and Electronics Measurements and Instrumentation Basic concepts of Power generation, transmission and distribution equipment's. Basics of indoor/outdoor substation equipment's. | | | | | | | | | | <b>Anti-requisites</b> | NIL | | | | | | | | | | Course Description | Power systems and industrial plants are made up of a variety of electrical drives, transformers, circuit breakers, and other equipment that must be installed, commissioned, and maintained on a regular basis to avoid permanent breakdown. It is required to carry out or supervise the installation, commissioning, and maintenance of various electrical equipment in power stations, substations, and industry. This course will enable to understand the concepts, and principles behind the installation, commissioning, and maintenance of electrical equipment in power stations, substations, and industry. | | | | | | | | | | Course Objectives | The objective of the course is to familiarize the learners with the concepts of Electrical Equipment Testing and Commissioning and attain Entrepreneurial Skills through Participative Learning techniques. | | | | | | | | | | Course Outcomes | <ol> <li>On successful completion of this course the students shall be able to</li> <li>Prepare of maintenance schedule of different equipment and machines</li> <li>Interpret various electrical equipment, machines and domestic appliances.</li> <li>Select procedure of different types of earthing for different types of electrical installations.</li> <li>Distinguish about electrical safety regulations and rules during maintenance</li> </ol> | | | | | | | | | | <b>Course Content:</b> | | | | | | | | | | | Module 1 | Safety Management | Assignm<br>ent | | Case stud | y | | 10 sessio | ons | | | need of Earthing, diffe<br>Resistance, Equipmen | fety Management during Operarent methods of Earthing, factor to Earthing and System Groupremises, earthing of substation | ors affecting the landing, Earthin | Earth l<br>g Pro | Resistance, me<br>cedure - Bui | ethods of n | neası | uring the I | Earth | | | Module 2 | Installation of Electrical Equipment | Assignm<br>ent | | Data collect | ion | | 9 session | ns | | | | of Electrical Equipment at site, ignment of Electrical Machine Inspection, storage and handli | s, Tools/Instrum | ents n | necessary for in | nstallation | | | | | | Module 3 | Testing of Transformer, Plant and Equipment | Assignm<br>ent | | Presentation | on | | 9 session | ns | | **Topics:** General Requirements for Type, Routine and Special Tests, Measurement of winding resistance; Measurement of voltage ratio and check of voltage vector relationship; Measurement of impedance voltage/short-circuit impedance and load loss; Measurement of no-load loss and current; Measurement of insulation 13 28 resistance; Dielectric tests; Temperature-rise, insulation and HV test, dielectric absorption, switching impulse test. Testing of Current Transformer and Voltage Transformer, power transformer, distribution transformer | | Installation and | | | | |----------|-----------------------------------------------|----------------|--------------|------------| | Module 4 | Commissioning of Rotating Electrical Machines | Assignm<br>ent | Presentation | 9 sessions | **Topics:** Degree of protection, cooling system, installation, commissioning and protection of induction motor and rotating electric machine, insulation resistance measurement, site testing and checking, care, services and maintenance of motors, commissioning of synchronous generator, protection and automation ## **Targeted Application & Tools that can be used:** Application Area is Power System Data collection, Electricity Transmission and Distributed companies, Power Grid and State Electricity Boards. #### **Textbooks** 1. Rao, S., "Testing, commissioning, operation and maintenance of electrical equipment", 6/E., Khanna Publishers, New Delhi #### **References** - 6. Paul Gill, "Electrical power equipment maintenance and testing", CRC Press, 2008. - 7. Singh Tarlok, "Installation, commissioning and maintenance of Electrical equipment", S.K. Kataria and Sons, New Delhi, - 8. Philip Kiameh, "Electrical Equipment Handbook: Troubleshooting and Maintenance", McGrawHill, 2003. - 9. Relevant Indian Standards (IS Code) and IEEE Standards for-Installation, maintenance and commissioning of electrical equipments/machines. #### **Online resources:** - 10. https://www.iimu.ac.in/upload\_data/Tender/SpecialConditionsWSequipment1.pdf - 11. https://www.sciencedirect.com/topics/engineering/commissioning-process - 12. Rao, S., "Testing, commissioning, operation and maintenance of electrical equipment", 6/E., Khanna Publishers, New Delhi - 13. <a href="https://puniversity.informaticsglobal.com:2229/login.aspx?">https://puniversity.informaticsglobal.com:2229/login.aspx?</a> direct=true&db=nlebk&AN=2706929&site=ehost-live - 5. https://puniversity.informaticsglobal.com **Topics relevant to "ENTREPRENEURIAL SKILLS":** Inspection of Electrical Equipment, Earthing Procedure - Building installation inspection of Electrical Equipment, Earthing Procedure - Building installation for developing **Entrepreneurial Skills** through **Participative Learning techniques**. This is attained through the assessment component mentioned in course handout. **Topics relevant to "HUMAN VALUES & PROFESSIONAL ETHICS":** Safety Management during Operation and Maintenance, electric tests, insulation and HV test. | Catalogue prepared | Mr. K Sreekanth Reddy | |--------------------|-------------------------------------------------| | by | | | Recommended by | D. G.N. 45th. 11 05/5/2022 | | the Board of | BoS No: 15 <sup>th</sup> held on 27/7/2022 | | Studies on | | | Date of Approval | 10th A 1 ' C '11 K ' 1 11 2/00/2022 | | by the Academic | 18th Academic Council Meeting held on 3/08/2022 | | Council | $\mathcal{O}$ | (Established under the Presidency University Act, 2013 of the Karnataka Act 41 of 2013) #### A-2[2020] COURSE HAND OUT SCHOOL: Engineering DEPT: EEE DATE OF ISSUE: 27/08/2022 NAME OF THE PROGRAM : B.TECH (EEE) P.R.C. APPROVAL REF. : PU/AC-18.5/EEE 15/EEE/2020-2024 SEMESTER/YEAR : V/3<sup>rd</sup> COURSE TITLE & CODE : Testing and Commissioning of Electrical Equipment's & EEE3011 COURSE CREDIT STRUCTURE : 3-0-0-3 CONTACT HOURS : 3 hrs/week COURSE INSTRUCTOR : COIURSE URL : #### PROGRAM OUTCOMES: Graduates of the B.Tech. Program in Electrical and Electronics Engineering will be able to: PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.(H) PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.(H) **PO3.** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.(L) **PO5.** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. **PO6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. **PO7.** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.(L) PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. **PO9.** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.(L) **PO11.** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. ## **COURSE PREREQUISITES:** Electric Power Generation, Transmission and Distribution Switchgear and Protection Electrical and Electronics Measurements and Instrumentation Basic concepts of Power generation, transmission and distribution equipment's. Basics of indoor/outdoor substation equipment's. #### **COURSE DESCRIPTION:** Power systems and industrial plants are made up of a variety of electrical drives, transformers, circuit breakers, and other equipment that must be installed, commissioned, and maintained on a regular basis to avoid permanent breakdown. It is required to carry out or supervise the installation, commissioning, and maintenance of various electrical equipment in power stations, substations, and industry. This course will enable to understand the concepts, and principles behind the installation, commissioning, and maintenance of electrical equipment in power stations, substations, and industry. ## **COURSE OBJECTIVE:** The objective of the course is to familiarize the learners with the concepts of Electrical Equipment Testing and Commissioning and attain Entrepreneurial Skills through Participative Learning techniques. **COURSE OUTCOMES:** On successful completion of the course the students shall be able to: - 1. Prepare of maintenance schedule of different equipment and machines - 2. Interpret various electrical equipment, machines and domestic appliances. - 3. Select procedure of different types of earthing for different types of electrical installations. - 4. Distinguish about electrical safety regulations and rules during maintenance. # MAPPING OF C.O. WITH P.O.: [H-HIGH, M-MODERATE, L-LOW] | C.O.N0. | P.O.01 | P.O.02 | P.O.04 | P.O.08 | P.O.10 | P.O.12 | |---------|--------|--------|--------|--------|--------|--------| | 1 | Н | Н | | | | L | | 2 | Н | Н | | | | L | | 3 | M | M | L | L | L | | | 4 | M | M | L | L | L | L | #### **COURSE CONTENT (SYLLABUS):** #### **MODULE: 1: SAFETY MANAGEMENT** Objectives, Safety Management during Operation and Maintenance, Clearance and Creepages, Electric Shock, need of Earthing, different methods of Earthing, factors affecting the Earth Resistance, methods of measuring the Earth Resistance, Equipment Earthing and System Grounding, Earthing Procedure - Building installation, Domestic appliances, Industrial premises, earthing of substation, generating station and overhead line. [11- Hrs] [Blooms 'level selected: Application] #### **MODULE: 2: INSTALLATION OF ELECTRICAL EQUIPMENT** Inspection of Electrical Equipment at site, Storage Electrical Equipment at site, Foundation of Electrical Equipment at site, Alignment of Electrical Machines, Tools/Instruments necessary for installation, technical report, Inspection, storage and handling of transformer, switchgear and motors [9-Hrs] [Blooms 'level selected: Application] ### MODULE: 3: TESTING OF TRANSFORMER, PLANT AND EQUIPMENT General Requirements for Type, Routine and Special Tests, Measurement of winding resistance; Measurement of voltage ratio and check of voltage vector relationship; Measurement of impedance voltage/short-circuit impedance and load loss; Measurement of no-load loss and current; Measurement of insulation 13 28 resistance; Dielectric tests; Temperature-rise, insulation and HV test, dielectric absorption, switching impulse test. Testing of Current Transformer and Voltage Transformer, power transformer, distribution transformer. [13Hrs] [Blooms 'level selected: Comprehension] ## MODULE: 4: INSTALLATION AND COMMISSIONING OF ROTATING ELECTRICAL MACHINES Degree of protection, cooling system, installation, commissioning and protection of induction motor Indian Standard (IS). Ref: IS 4029:2010-Guide for Testing Three Phase Induction Motors; IS 7132:1973-Guide for Testing Synchronous Machines; IS 9320:1979-Guide for Testing of Direct Current (dc) Machines] rating and duties of CB, installation, commissioning tests, maintenance schedule, type & routine tests. [13-Hrs] [Blooms 'level selected: Analysis] ## **DELIVERY PROCEDURE (PEDAGOGY):** ## **Topics for Self-Learning:** - 11. switchgear and motors - 2. distribution transformer ## Note: 9. All the Topics will be covered through **Lecture Method.** #### **E-materials:** - 1. https://nptel.ac.in/courses/108/104/108104013/ - 2. <a href="https://www.youtube.com/watch?v=pRZ2ygbbyTg">https://www.youtube.com/watch?v=pRZ2ygbbyTg</a> - 3. https://studymaterialz.in/hvdc-power-transmission-systems-by-padiyar/ - 4. <a href="https://puniversity.informaticsglobal.com:2282/ehost/detail/vid=3&sid=15d54a1f-070b-4419-b1d2">https://puniversity.informaticsglobal.com:2282/ehost/detail/detail?vid=3&sid=15d54a1f-070b-4419-b1d2</a> - 5. https://ieeexplore.ieee.org/abstract/document/4745240 - 6. https://presiuniv.knimbus.com/user#/home ## **REFERENCE MATERIALS:** #### **Textbooks:** 1. Rao, S., "Testing, commissioning, operation and maintenance of electrical equipment", 6/E., Khanna Publishers, New Delhi ## **Reference book(s):** - 1. Paul Gill, "Electrical power equipment maintenance and testing", CRC Press, 2008. - 2. Singh Tarlok, "Installation, commissioning and maintenance of Electrical equipment", S.K. Kataria and Sons, New Delhi, - 3. Philip Kiameh, "Electrical Equipment Handbook: Troubleshooting and Maintenance", McGrawHill, 2003. 4. Relevant Indian Standards (IS Code) and IEEE Standards for-Installation, maintenance and commissioning of electrical equipments/machines. ## **GUIDELINES TO STUDENTS:** (Here mention a few tips to study this course effectively) - The students are advised to be very much regular to the online classes and sincerely attempt the learnings listed in the Pedagogical section. - The students are advised to take down the notes legibly which serves as a firsthand information to study and revise lecture topics on day to day basis. - The students are advised to visit the Edhitch portal and Microsoft teams on a regular basis to study the supporting materials shared by the course instructors. - The students are advised to use the journals, technical magazines and other relevant materials. - The students are advised to watch the video lectures available online to understand and review the concepts delivered in the class as well as problems assigned for self-learning topics. COURSE SCHEDULE: (This is a macro level planning. Mention the unit wise expected starting and ending dates along with the tests/assignments/quiz and any other activities) [allot about 75% for delivary,about10 to 12% for Evaluation Discussion, about 10 to 15% on integrating the learning Modules within the course and to the program] | Sl. No. | ACTIVITY | STARTING | CONCLUDING | TOTAL NUMBER | |---------|------------------------------------------|----------|------------|--------------| | | | DATE | DATE | OF PERIODS | | 01 | Program Integration | | | 2 | | 01 | Over View of the course | | | 2 | | 02 | Module: 01 Content | | | 11 | | 03 | Module:2 Course Integration & content | | | 9 | | 04 | Mid Term <b>Test</b> | | | | | 05 | Test Paper Discussion | | | 1 | | 06 | Module:03 Course Integration and content | | | 13 | | 07 | Module:04 Course Integration and content | | | 13 | | 08 | Case Study | | | NA | | 10 | Program integration | | | 01 | ## SCHEDULE OF INSTRUCTION: **MODULE: 1: SAFETY MANAGEMENT** | Sl.<br>no | Session no | Lesson Title | Topics | | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |-----------|------------|---------------------|----------------------------------------|------------------|-----------------------------|------------------|-----------| | 1 | S1 | Program Integration | Objectives,<br>Management<br>Operation | Safety<br>during | | | | | 2 | S2 | Course | Maintenance, Clearance | | | | | | |----|-----------------------|-------------|----------------------------------------------|-------|-----------------|----|--|--| | | | Integration | and Creepages | | | | | | | | S3 | | Electric Shock, need of | | Lecture | | | | | 3 | | | Earthing, different | CO. 1 | Mode | T1 | | | | | | | methods of Earthing | | | | | | | 4 | S4 | | factors affecting the Earth | CO. 1 | Lecture | T1 | | | | | | | Resistance, | | Mode | | | | | 5 | S5 | | methods of measuring the | CO. 1 | Lecture | T1 | | | | | | | Earth Resistance | CO. 1 | Mode | 11 | | | | 6 | S6 | | Equipment Earthing and | CO. 1 | Lecture | T1 | | | | | | | System Grounding | CO. 1 | Mode | 11 | | | | 7 | S7 | - | Earthing Procedure - | CO. 1 | Lecture | T1 | | | | ′ | | | Building installation, | CO. 1 | Mode | 11 | | | | | S8 | - | Domestic appliances, | | Lecture | | | | | 8 | | | Industrial premises, | CO. 1 | Mode | T1 | | | | | | | earthling of substation, | | | | | | | | S9 | | Domestic appliances, | | Lecture | | | | | 9 | | | Industrial premises, earthling of substation | CO. 1 | Mode | T1 | | | | | | | _ | | | | | | | 10 | S10 | | generating station and overhead line | CO. 1 | Lecture<br>Mode | T1 | | | | | | | | | Mode | | | | | 11 | S11 | | generating station and | CO. 1 | Lecture | T1 | | | | | _ | | overhead line | | Mode | | | | | | Module 1 is completed | | | | | | | | ## MODULE: 2: INSTALLATION OF ELECTRICAL EQUIPMENT | Sl. | Session no | Lesson Title | Topics | Course | Delivery | Reference | |-----|------------|--------------|--------------------------|---------|----------|-----------| | no | | | | Outcome | Mode | | | | | | | Number | | | | | S12 | Course | Inspection of Electrical | | | | | 1 | | Integration | Equipment at site, | | | | | | | | | | | | | | S13 | | Storage Electrical | | Lecture | | | 2 | | | Equipment at site, | CO. 2 | Mode | T1 | | | | | | | | | | | S14 | | Foundation of Electrical | | Lecture | | | 3 | | | Equipment at site, | CO. 2 | Mode | T1 | | | | | | | | | | | S15 | | Alignment of Electrical | | Lecture | | | 4 | | | Machines, | CO. 2 | Mode | T1 | | | | | | | | | | 5 | S16 | | Tools/Instruments necessary for installation, | CO. 2 | Lecture<br>Mode | Т1 | |---|-----------|-------------|-----------------------------------------------|-------|-----------------|---------------------------------------------------------------------| | 6 | S17 | | technical report,<br>Inspection, | CO. 2 | Lecture<br>Mode | Т1 | | 7 | S18 | | storage and handling of transformer, | CO. 2 | Lecture<br>Mode | Т1 | | 8 | S19 | | storage and handling of transformer, | CO. 2 | Lecture<br>Mode | T1 | | 9 | S20 | | switchgear and motors | CO. 2 | Lecture<br>Mode | Т1 | | | Self-Lear | rning Topic | | | | IEEE Explore - School of Engineering https://punive rsity.informat | | | | | Module 2 is completed | | | icsglobal.co<br>m/login | ## MODULE: 3: TESTING OF TRANSFORMER, PLANT AND EQUIPMENT | Sl.<br>no | Session no | Lesson Title | Topics | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |-----------|------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|-----------| | - | S21 | Course<br>Integration | General Requirements for Type, | CO. 3 | Lecture<br>Mode | T1 | | 2 | S22 | | Routine and Special Tests, | CO. 3 | Lecture<br>Mode | T1 | | 3 | S23 | | Measurement of winding resistance; | CO. 3 | Lecture<br>Mode | T1 | | 4 | S24 | | Measurement of voltage ratio and check of voltage vector relationship; Measurement of impedance voltage/short-circuit impedance and load loss; | CO. 3 | Lecture<br>Mode | Т1 | | 5 | S25 | Measurement of voltage ratio and check of voltage vector relationship; Measurement of impedance voltage/short-circuit impedance and load loss; | CO. 3 | Lecture<br>Mode | Т1 | |----|-----|------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|----| | 6 | S26 | Measurement of no-load loss | CO. 3 | Lecture<br>Mode | Т1 | | 7 | S27 | current; Measurement of insulation 13 28 resistance; | CO. 3 | Lecture<br>Mode | Т1 | | 8 | S28 | Dielectric tests;<br>Temperature-rise, | CO. 3 | Lecture<br>Mode | Т1 | | 9 | S29 | insulation and HV test, dielectric absorption, | CO. 3 | Lecture<br>Mode | Т1 | | 10 | S30 | switching impulse test. Testing of Current | CO. 3 | Lecture<br>Mode | Т1 | | 11 | S31 | Transformer and Voltage Transformer, | CO. 3 | Lecture<br>Mode | Т1 | | 12 | S32 | power transformer,<br>distribution transformer | CO. 3 | Lecture<br>Mode | T1 | | 13 | S33 | power transformer,<br>distribution transformer | CO. 3 | Lecture<br>Mode | Т1 | ## Module 3 is completed ## MODULE: 4: INSTALLATION AND COMMISSIONING OF ROTATING ELECTRICAL MACHINES | Sl.<br>no | Session no | Lesson Title | Topics | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |-----------|------------|-----------------------|------------------------------------------------------------------------|-----------------------------|------------------|-----------| | 1 | S34 | Course<br>Integration | Degree of protection, cooling system | | | | | 2 | S35 | | installation,<br>commissioning and<br>protection of induction<br>motor | CO .4 | Lecture<br>Mode | Т1 | | 3 | S36 | | Indian Standard (IS).<br>[Ref: IS 4029:2010- | CO .4 | Lecture<br>Mode | T1 | REGISTRAR Registrar | | | Guide for Testing Three | | | | |----|-----|----------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|------------------| | | | Phase Induction Motors; | | | | | | | | | | | | 4 | S37 | Indian Standard (IS). [Ref: IS 4029:2010- Guide for Testing Three Phase Induction Motors; | CO .4 | Lecture<br>Mode | Technical papers | | 5 | S38 | IS 7132:1973-Guide for Testing | CO .4 | Lecture<br>Mode | Technical papers | | 6 | S39 | Synchronous Machines;<br>IS 9320:1979-Guide for<br>Testing of Direct Current<br>(dc) Machines] rating and<br>duties of CB | CO .4 | Lecture<br>Mode | Technical papers | | 7 | S40 | Synchronous Machines;<br>IS 9320:1979-Guide for<br>Testing of Direct Current<br>(dc) Machines] rating and<br>duties of CB, | CO .4 | Lecture<br>Mode | Technical papers | | 8 | S41 | installation, commissioning tests, | CO .4 | Lecture<br>Mode | Technical papers | | 9 | S42 | installation, commissioning tests, maintenance schedule, type & routine tests | CO .4 | Lecture<br>Mode | Technical papers | | 10 | S43 | installation, commissioning tests, maintenance schedule, type & routine tests | CO .4 | Lecture<br>Mode | Technical papers | | 11 | S44 | maintenance schedule,<br>type & routine tests | CO .4 | Lecture<br>Mode | Technical papers | | 12 | S45 | maintenance schedule, type & routine tests | CO .4 | Lecture<br>Mode | Technical papers | | | l l | Module 4 is | s completed | 1 | 1 | **Topics relevant to "ENTREPRENEURIAL SKILLS":** Inspection of Electrical Equipment, Earthing Procedure - Building installation for developing **Entrepreneurial Skills** through **Participative Learning techniques.** This is attained through the **Presentation** as mentioned in the assessment component. ## **ASSESSMENT SCHEDULE:** | S. | Assessment Type | Contents | СО | Duration | Mark | Weightag | Venue, | |-----|-----------------|----------|--------|----------|------|----------|--------| | No. | | | | In Hours | S | e | DATE | | | | | Number | | | | &TIME | | | | | | | | | | | 2. | Présentation | Topic can be<br>selected from any<br>Module | CO 2 and<br>CO 4 | - | 30 | 15% | | |----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------|---------------|-----|-----|--| | 3. | Mid Term Exam | M1,M2 | CO1,2 | 90<br>Minutes | 60 | 30% | | | 4. | Assignement as self-Learning topics Review of digital/eresources from Pres. Univ.link given in the references section (Mandatory to submit the screenshots of accessing digital Resource. Otherwise it will not be evaluated) | https://presiuniv.<br>knimbus.com/use<br>r#/home | CO3 | -NA- | 10 | 5% | | | 5. | End Term | All modules | CO 1,2,3,4 | 3 hours | 100 | 50% | | COURSE CLEARANCE CRITERIA: (Here mention the minimum requirements of attendance, marks in continuous assessment & term end examination, make up exam policy and other details as per the academic regulations & PRC): - Minimum of 75% Attendance is must to take up examination. - Minimum of 40% score is must in internal assessment. - Minimum of 30% in the Final Examination. - Minimum 40% including internal assessment and Final Examination to clear the subject. - Make up policy is applicable only as per academic regulation - There will be no make-up for ASSIGNMENT and QUIZ. ## **MAKEUP POLICY:** If the student misses an evaluation component, he/she may be granted a make-up. In case of an absence that is foreseen, make-up request should be personally made to the Instructor-in-Charge, well ahead of the scheduled evaluation component. Reasons for unanticipated absence that qualify a student to apply for make-up include medical emergencies or personal exigencies. In such an event, the student should contact the Instructor-in-Charge as soon as practically possible. ### CONTACT TIMINGS IN THE CHAMBER FOR ANY DISCUSSIONS: Interested students may contact the Instructor In-charge during the student free Hour and Wednesday, Friday 3:00-4:00 pm to clear doubts. SAMPLE THOUGHT PROVOKING QUESTIONS: (Here type sample typical questions for students 'reference) | | | \ J1 | 1 71 1 | | |----|----------|-------|---------|---------------| | SL | QUESTION | MARKS | COURSE | BLOOM'S LEVEL | | NO | | | OUTCOME | | | | | | NO. | 0 | | | | | | a will | | 1 | Explain the importance of Transformer oil and its characteristics | 8 | 1 | Comprehension | |---|----------------------------------------------------------------------------|----|---|---------------| | 2 | Explain the terms Relay,Fuse, Circuit breaker, Isolator, Loadbreak Switch. | 10 | 2 | Comprehension | | 3 | what are the steps used in Commissioning of transformers? | 10 | 4 | Comprehension | | 4 | Explain why cooling is required and explain various type in cooling | 10 | 3 | Comprehension | **Target Set For Course Outcome Attainment:** | Sl.no | C.O.<br>No. | Course Outcomes | Target set for attainment in percentage | |-------|-------------|-----------------|-----------------------------------------| | 01 | Co1 | | | | 02 | Co2 | | | | 03 | Co3 | | | | 04 | Co4 | | | | Signature | of the course | Instructor | |------------------|---------------|-------------| | <b>Signature</b> | or the course | : mstructor | This course has been duly verified Approved by the D.A.C. Signature of the Chairperson D.A.C. | <b>Course Code:</b> | <b>Course Title: Battery</b> | Technology | | | | | | | | |-----------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------|------------------------|--------|--------|----------|-------------------|--| | EEE334 | _ | cipline Elective and T | Theory | T TO D C | 2 | 0 | | 2 | | | | only | • | | L-T-P-C | 3 | 0 | 0 | 3 | | | | | | | | | | | | | | Version No. | 1.0 | | | | | | | | | | Course Pre- | NIII | | | | | | | | | | requisites | NIL | | | | | | | | | | <b>Anti-requisites</b> | NIL | | | | | | | | | | Course | The course provides fu | ndamental knowledge o | n electro | ochemical er | nergy | stora | ge svs | tems | | | Description | ^ | ion and design of vario | | | | | • | | | | 2 Courpoid | | ement of batteries for | | - | - | | | | | | | environment policy co | | | 11 | | | | | | | | | | | | | | | | | | | The objective of the c | ourse is to familiarize t | he learn | ers with the | con | cepts | of Ba | ittery | | | Course | ••• | in <mark>Entrepreneurial S</mark> | <mark>kills</mark> th | rough <mark>Par</mark> | ticipa | ative | Lear | <mark>ning</mark> | | | Objectives | techniques. | | | | | | | | | | Course Out | After the completion of | f the course students sh | all he ah | ole to: | | | | | | | Comes | Titel the completion o | 1 mil course students sin | 50 dt | | | | | | | | Comes | 1. Recognize the | e basic physical conc | epts of | thermodyr | namio | es an | d kin | etics | | | | involved in ele | ectrochemical reactions. | | | | | | | | | | 2. Analyze the o | characterization method | ds of b | atteries an | d in | terpre | t con | cepts | | | | | tery performance. | | | | | | | | | | | ecent developments of b | | | | | | | | | | 4. Discuss the red | quirements of battery sy | stems fo | or automotiv | e ap | plicat | ions. | | | | <b>Course Content:</b> | | | | | | | | | | | | | T | | | | | | | | | | Introduction to | | - | | | | 0.0 | | | | Module 1 | Electrochemical | Assignment | Data Aı | nalysis | | 1 | 0 Sess | sions | | | 700 • T . 1 .* | energy storage | T1 | | '1.1 11 D | | *1.1 | 1 . | 1 | | | _ | on to battery technologi | | | | | | | | | | | electrical energy and energy | | e energy | cnanges an | a eie | ctrom | otive | iorce | | | in cen, Current cha | llenges in Energy storag | ge Technologies | | | | | | | | | Module 2 | Major Battery Chemistries | Assignment | Problen | n Solving | | 1 | 2 Sess | sions | | | Tomicas Dottoms no | | himan hattam Camiaa | 4: X/ | -140 doto | C | 1: | <b>f</b> | 1 | | | • • • • • • • • • • • • • • • • • • • • | erformance evaluation, P | • | | _ | | | | | | | | of operating temperature | | | | | | | | | | Discharge curves - | Terminal voltages- Plate | cau voitage, Leau aciu i | Jane 1168 | – Construc | uon | anu d | ppiicai | uon | | | | Recent Technologies | | D :: | G 1 : | | | 2.2 | • | | | Module 3 | | Assignment | Problen | n Solving | | 1 | 3 Sess | sions | | | Topics: Recent de | velopment of electrode | materials in lithium-ior | n batteri | es, Recent of | devel | opme | nt of | solid | | | electrolytes and t | heir application to sol | id state batteries, Poly | ymer so | olid electrol | ytes | for 1 | ithiun | n-ion | | | conduction, Const | cruction and state of a | art of Thin Film Batt | eries, S | Super Capac | citors | s: Fu | ndame | ental, | | | Construction and a | pplication | | | | | | | | | | | Batteries for | | | | | | | | | | Module 4 | Automotives – | Assignment | Quiz | | | 1 | 0 Sess | sions | | | | Future prospect Fopics: Degrees of vehicle electrification, Battery size vs. application, USABC and DOE targets for | | | | | | | | | | | | | | | | | _ | | | | | orage systems, Analysis | | _ | | 1 | 1 | mode | eling, | | | Environmental con | cern in battery production | on, Environmental conce | erns in r | ecycling of | batte | ries | سلا | | | | | | | | | ( | Spare | SEM | J ONIL | | ## **Targeted Application & Tools that can be used:** The battery technology focus on the fundamentals of electrochemical energy storage considering the operation and design of various battery technologies. The use of primary and rechargeable batteries such as Lead-acid, Li-ion, NiMH, NaS, metal-air etc., is widely used in the industry. The Commercially available simulation software tools like MATLAB are utilized as professional tool for modeling the battery storage system. #### **TextBooks** - 1. T.Minami, M.Tatsumisago, M.Wakihara, C. Iwakura, S. Kohijiya, Solid state ionics for batteries, Springer Publication, 2009 - 2. Sandeep Dhameja, Electric Vehicle Battery Systems, Newnes publication, 2001. #### **References** - 1. Bard, Allen J., and Larry R. Faulkner. Electrochemical Methods: Fundamentals and Applications. 2<sup>nd</sup> - ed., Wiley-VCH, Verlag, GmbH, 2000. - 2. Masataka Wakihara and Osamu Yamamoto, Lithium ion Batteries Fundamental and Performance, Wiley–VCH, Verlag GmbH, 1999. - 3. Robert A.Huggins, Advanced Batteries Materials science aspects, Springer, 2009. #### **Online resources** - 1. Case study: - https://puniversity.informaticsglobal.com:2282/ehost/ebookviewer/ebook/bmxlYmtfXzEzNTY 2MTdfX0FO0?sid=5ac3e684-9a30-45af-a5c4-a4c437d65a8c@redis&vid=32&format=EB - 2. Seminar: - https://puniversity.informaticsglobal.com:2282/ehost/ebookviewer/ebook/bmx1YmtfXzE2NjYwNV9fOU41?sid=5ac3e684-9a30-45af-a5c4-a4c437d65a8c@re - 3. Ebook: <a href="https://puniversity.informaticsglobal.com/menu">https://puniversity.informaticsglobal.com/menu</a> - 4. https://nptel.ac.in/courses/107/106/107106088/ **Topics relevant to "ENTREPRENEURIAL SKILLS":** Ability to identify lead battery functional safety system, cell selection through battery system level for developing **Entrepreneurial Skills** through **Participative Learning techniques.** This is attained through assessment component mentioned in the course handout. | Catalogue<br>prepared by | Dr. Snehaprabha T V | |--------------------------|-----------------------------------------------------------| | Recommended | 6 <sup>th</sup> BoS held on 2/12/2017 | | by the Board of | | | <b>Studies on</b> | | | Date of | 8 <sup>th</sup> Academic Council Meeting held on 14/06/18 | | Approval by the | | | Academic | | | Council | | (Established under the Presidency University Act, 2013 of the Karnataka Act 41 of 2013) ACA-2 SCHOOL: School of Engineering DEPT.: EEE DATE OF ISSUE: 29.07.2020 NAME OF THE PROGRAM : Electrical and Electronics Engineering P.R.C. APPROVAL REF. : PU/AC-14/07/12 2020 SEMESTER/YEAR COURSE TITLE & CODE : Battery Technology /EEE334 COURSE CREDIT STRUCTURE : 3-0-0 -3 CONTACT HOURS : 3 Hrs/Week COURSE INSTRUCTOR : COURSE URL : PROGRAM OUTCOMES: [LIST ALL AND CIRCLE THE RELEVANT SELECTED OUTCOMES] Graduates of the B. Tech. Program in Electrical and Electronics Engineering will be able to: - **PO1.** ENGINEERING KNOWLEDGE: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems. - PO2. PROBLEM ANALYSIS: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. - PO3. DESIGN/DEVELOPMENT OF SOLUTIONS: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. - PO4. CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. - PO5. MODERN TOOL USAGE: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations - **PO6.** THE ENGINEER AND SOCIETY: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. - **PO7.** ENVIRONMENT AND SUSTAINABILITY: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. - **PO8.** ETHICS: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. - PO9. INDIVIDUAL AND TEAM WORK: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. - PO10. COMMUNICATION: communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. - **PO11**. PROJECT MANAGEMENT AND FINANCE: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. - **PO12.** LIFE-LONG LEARNING: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. ## **COURSE PREREQUISITES: Nil** #### **COURSE DESCRIPTION:** The course provides fundamental knowledge on electrochemical energy storage systems considering the operation and design of various battery technologies and it helps to understand the requirement of batteries for automotive application combined with environment policy considerations. #### **COURSE OBJECTIVE:** The objective of the course is to familiarize the learners with the concepts of Battery Technology and attain **Entrepreneurial Skills** through **Participative Learning** techniques. #### **COURSE OUTCOMES:** After the completion of the course students shall be able to: - 1. Recognize the basic physical concepts of thermodynamics and kinetics involved in electrochemical reactions. - 2. Analyze the characterization methods of batteries and interpret concepts describing battery performance. - 3. Describe the recent developments of battery systems. - 4. Discuss the requirements of battery systems for automotive applications. ## MAPPING OF C.O. WITH P.O.: #### [H-HIGH, M- MODERATE, L-LOW] | C.O.NO. | P.O. | P.O. | P.O. | P.O. | P.O. | |---------|------|------|------|------|------| | | 01 | 02 | 03 | 04 | 10 | | C.O.1 | L | | | | L | | C.O.2 | L | | | L | L | | C.O.3 | M | | M | | | | C.O.4 | | Н | | | | | C.O.5 | L | | L | M | | ## **COURSE CONTENT (SYLLABUS):** Module:1: Introduction to Electrochemical energy storage Introduction to battery technologies, Electromotive force- Reversible cells-Reversible electrodes, Relation between electrical energy and energy content of a cell-Free energy changes and electromotive force in cell, Current challenges in Energy storage Technologies [06 Sessions] [ Blooms 'level selected: Knowledge] **Module: 2: Major Battery Chemistries** Battery performance evaluation, Primary battery Service time- Voltage data- Service life – ohmic load curve, Effect of operating temperature on service life – other characteristic curves, Secondary batteries- Discharge curves - Terminal voltages- Plateau voltage, Lead acid Batteries – Construction and application [11 Sessions] [ Blooms 'level selected: comprehension] ## **Module: 3: Recent Technologies** Recent development of electrode materials in lithium-ion batteries, Recent development of solid electrolytes and their application to solid state batteries, Polymer solid electrolytes for lithium ion conduction, Construction and state of art of Thin Film Batteries, Super Capacitors: Fundamental, Construction and application [13 Sessions] [ Blooms 'level selected: Application] ### **Module: 4: Batteries for Automotives – Future prospect** Degrees of vehicle electrification, Battery size vs. application, USABC and DOE targets for vehicular energy storage systems, Analysis and Simulation of batteries - Equivalent circuit and life modeling, Environmental concern in battery production, Environmental concerns in recycling of batteries [11 Sessions] [ Blooms 'level selected: Application] ## **DELIVERY PROCEDURE (PEDAGOGY):** ## **Topics for Self Learning:** - a) Identify the current challenges in energy storage technologies. - b) Differences between lithium ion and lead-acid battery. - c) Types and effects of using different kinds of batteries in various applications. #### **Experiential Learning Topics:** a) Identifying the different types of batteries used in Electric Vehicle. ## **Participative Learning Topics:** - a) Group Assignments on recent developments in the area of battery technologies for Electric vehicle application. - b) Group Assignments on standard parameters of lithium-ion batteries. #### **Technology Enabled Learning:** **Problem solving ability topics:** Most of the topics are covered through lecture method. #### **REFERENCE MATERIALS:** #### (i)Text Books: - 1. T.Minami, M.Tatsumisago, M.Wakihara, C. Iwakura, S. Kohijiya, Solid state ionics for batteries, Springer Publication, 2009 - 2. Sandeep Dhameja, Electric Vehicle Battery Systems, Newnes publication, 2001. ## (ii) Reference Book: - 1. Bard, Allen J., and Larry R. Faulkner. Electrochemical Methods: Fundamentals and Applications. 2<sup>nd</sup> ed.,Wiley–VCH, Verlag, GmbH, 2000. - 2. Masataka Wakihara and Osamu Yamamoto, Lithium-ion Batteries Fundamental and Performance, Wiley-VCH, Verlag GmbH, 1999. - 3. Robert A.Huggins, Advanced Batteries Materials science aspects, Springer, 2009. ## (iii) Online resources - 1. <a href="https://puniversityinformaticsglobal.com/openFullText.html?DP=https://ieeexplore.ieee.org/document/7967241">https://ieeexplore.ieee.org/document/7967241</a> - 2. <a href="https://ieeexplore.ieee.org/document/712612">https://ieeexplore.ieee.org/document/712612</a> - 3. https://ieeexplore.ieee.org/document/5060940 ## 4. <a href="https://puniversity informaticsglobal.com/user#/home">https://puniversity informaticsglobal.com/user#/home</a> ## **GUIDELINES TO STUDENTS:** - 1. Try to identify challenges related to battery technology for various applications. - 2. Try to differentiate between various kinds of battery technology such as lead acid battery, lithium-ion battery, solid state battery. - 3. NPTEL web course by Prof. Kaushik Pal of IIT, Roorkee on Electrochemical Energy Storage. ## **COURSE SCHEDULE:** | S | | | | TOTAL | |-----|-----------------------------|----------|------------|---------| | L | | STARTING | CONCLUDING | NUMBER | | .N | ACTIVITY | DATE | DATE | OF | | 0 | | 21112 | 31112 | PERIODS | | U | | | | LIGODS | | 01 | Introduction to the course | | | 01 | | 02 | Course Integration of | | | 01 | | | module-1 | | | | | 03 | Module: 01 | | | 06 | | 04 | Course Integration of | | | 01 | | | module-2 | | | | | 05 | Module: 02 | | | 09 | | 06 | Mid-term | | | | | 07 | Quiz-1 | | | 01 | | 08 | Course Integration of | | | 01 | | 00 | module-3 | | | VI. | | 09 | Module: 03 | | | 13 | | 10 | ASSIGNMENT | | | 01 | | 11 | Students Group Presentation | | | 01 | | 12 | Course Integration of | | | Δ1 | | 12 | module-4 | | | 01 | | 13 | Module-04 | | | 08 | | 1.4 | TERM END | | | | | 14 | EXAMINATIONS. | | | | ## **SCHEDULE OF INSTRUCTION:** | Sl.<br>no | Session<br>no[date if<br>possible] | Lesson Title | Topics | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |-----------|------------------------------------|------------------------|--------------------------------------------|-----------------------------|-----------------------|-----------| | 01 | S-1 | Program<br>Integration | Job description and requisites to meet the | | PPT, Chalk<br>& Board | | | | | | same | | C | | REGISTRAR REGISTRAR | 02 | S-2 | Course integration | Introduction to the course | | PPT, Chalk<br>& Board | | |----|----------|--------------------------------------------------------------------------|------------------------------------------------------------|----------|-----------------------|--------------| | | | | | | | | | I | MODULE1: | INTRODUCTION TO | O ELECTROCHI | EMICAL I | ENERGY STOR | AGE | | 03 | S-3 | | Need of<br>battery<br>technology | CO1 | PPT, Chalk<br>& Board | T1 | | 04 | S-4 | | Requirement of battery technology | CO1 | PPT, Chalk<br>& Board | T1 | | 05 | S-5 | Introduction to battery technologies | Reversible cells-<br>Reversible electrodes | CO1 | PPT, Chalk<br>& Board | T1 | | 06 | S-6 | Relation between<br>electrical energy<br>and energy content<br>of a cell | Free energy changes and electromotive force in cell | CO1 | PPT, Chalk<br>& Board | T1 | | 07 | S-7 | Challenges in Battery Technology | Current<br>challenges in<br>Energy storage<br>Technologies | CO2 | PPT, Chalk<br>& Board | Т1 | | 08 | S-8 | | Challenges in electric vehicle application | CO2 | PPT, Chalk<br>& Board | T1 | | | | COMPLI | ETION OF MOD | ULE-1 | | | | 09 | S-9 | Course integration | Integration of unit-1 to unit-2 | | PPT, Chalk<br>& Board | | | | | MODULE: 2: MA, | JOR BATTERY ( | CHEMIST | RIES | | | 10 | S-10 | Performance evaluation | Battery<br>performance<br>evaluation | CO3 | PPT, Chalk<br>& Board | T2 | | 11 | S-11 | | Primary battery Service time- Voltage data- Service life – | CO3 | PPT, Chalk<br>& Board | Т2 | | | | | , | | ≥REG! | STRAR Regist | | | | | ohmic load<br>curve | | | | |----|------|-------------------------------------|-------------------------------------------------|----------|-----------------------|----------------| | 12 | S-12 | | Effect of operating temperature on service life | CO3 | PPT, Chalk<br>& Board | T2 | | 13 | S-13 | | other<br>characteristic<br>curves | | | | | 14 | S-14 | Midterm<br>EVALUATION<br>DISCUSSION | | | | | | 15 | S-15 | Secondary batteries | Discharge<br>curves -<br>Terminal<br>voltages- | CO3 | PPT, Chalk<br>& Board | Т2 | | 16 | S-16 | | Plateau<br>voltage | CO3 | PPT, Chalk<br>& Board | T2 | | 17 | S-17 | Lead acid Batteries | Construction | CO3 | PPT, Chalk<br>& Board | T2 | | 18 | S-18 | | application | CO3 | PPT, Chalk<br>& Board | T2 | | 19 | S-19 | QUIZ-1 | | | | | | | | COMPLE | ETION OF MOD | OULE-2 | , | | | 20 | S-20 | Course integration | Integration of unit-2 to unit-3 | | PPT, Chalk<br>& Board | | | | | MODULE: 3: 1 | RECENT TECH | NOLOGIES | 3 | | | 21 | S-21 | Lithium-ion batteries | Recent<br>development | CO4 | PPT, Chalk<br>& Board | R1 | | | | <u> </u> | <u> </u> | <u> </u> | | ALLIE SOCY UND | | 22 | S-22 | | electrode<br>materials used<br>in Lithium-ion<br>battery | CO4 | PPT, Chalk<br>& Board | R1 | |----|------|----------------------------|----------------------------------------------------------------|--------|-----------------------|--------------------| | 23 | S-23 | Solid state batteries | Introduction | CO4 | PPT, Chalk<br>& Board | R1 | | 24 | S-24 | | Recent<br>development<br>of solid<br>electrolytes | CO4 | PPT, Chalk<br>& Board | R1 | | 25 | S-25 | | Application | CO4 | PPT, Chalk<br>& Board | R1 | | 26 | S-26 | Polymer solid electrolytes | Introduction | CO4 | PPT, Chalk<br>& Board | R1 | | 27 | S-27 | | Polymer solid<br>electrolytes<br>for lithium ion<br>conduction | CO4 | PPT, Chalk<br>& Board | R1 | | 28 | S-28 | Thin Film Batteries | Construction | CO4 | PPT, Chalk<br>& Board | R1 | | 29 | S-29 | | State of art of<br>Thin Film<br>Batteries | CO4 | PPT, Chalk<br>& Board | R1 | | 30 | S-30 | | Application | CO4 | PPT, Chalk<br>& Board | R1 | | 31 | S-31 | Super Capacitors | Fundamental | CO4 | PPT, Chalk<br>& Board | R1 | | 32 | S-32 | | Construction | CO4 | PPT, Chalk<br>& Board | R1 | | 33 | S-33 | | Application | CO4 | PPT, Chalk<br>& Board | R1 | | | • | COMPLE | ETION OF MOD | OULE-3 | | | | 34 | S-34 | GROUP<br>ASSIGNMENT | | | PL | ) | | | | | | | P(6) | GISTRAR PROJECTION | | | 0.25 | GROUP | | | | | |-----|--------|--------------------|------------------------------|-----------|-----------------------|------------| | 35 | S-35 | PRESENTATION | | | PL | | | | | TRESERVITATION | | | | | | | | | | | | | | | S-36 | Course integration | Integration of | | PPT, Chalk | | | 36 | 3-30 | | unit-3 to unit- | | & Board | | | | | | 4 | | | | | | | | | | | | | | MODULE | E: 4: BATTERIES FO | R AUTOMOTIV | VES – FUT | URE PROSPE | CT | | | S-37 | Electric Vehicle | Degrees of | | PPT, Chalk | | | 37 | | | vehicle | CO5 | & Board | T1 | | | | | electrification | | | | | | S-38 | 1 | Dottomy sine | | | | | 38 | 5 30 | | Battery size vs. application | CO5 | PPT, Chalk | T1 | | | | | vs. application | | & Board | | | | | - | USABC and | | | | | | S-39 | | DOE targets | | DDT CL 11 | | | 39 | 5 57 | | for vehicular | CO5 | PPT, Chalk<br>& Board | T1 | | | | | energy storage | | & Board | | | | | | systems | | | | | | S-40 | Simulation of | Analysis | | DDT Cl11- | | | 40 | | batteries | Allalysis | CO5 | PPT, Chalk<br>& Board | T1 | | | | | | | & Board | | | | S-41 | - | Equivalent | | PPT, Chalk | | | 41 | | | circuit | CO5 | & Board | <b>T</b> 1 | | | | | | | & Board | | | | S-42 | - | Life modeling | | PPT, Chalk | | | 42 | | | 8 | CO5 | & Board | T1 | | | | | | | | | | | 0.42 | Environmental | Environmental | | | | | 43 | S-43 | concern | concern in | CO5 | PPT, Chalk | T1 | | 73 | | | battery | CO3 | & Board | 11 | | | | | production | | | | | | | - | Environmental | | | | | 4.4 | S-44 | | concerns in | 005 | PPT, Chalk | TP.1 | | 44 | | | recycling of | CO5 | & Board | T1 | | | | | batteries | | | | | | | COMPI I | ETION OF MOD | <br> | | | | | | | | | | | | | | COMPLET | ION OF THE SY | LLABUS | | | | | | | | | | | **Topics relevant to "ENTREPRENEURIAL SKILLS":** Ability to identify lead battery functional safety system, cell selection through battery system level for developing **Entrepreneurial Skills** through **Participative Learning techniques.** This is attained through the **Presentation** as mentioned in the assessment component. ## ASSESSMENT SCHEDULE: | <u>SSMENT</u> | SCHEDULE: | | | | | | | |---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------|----------------------|-------|-------------------|-----------------------------------------| | Sl.no | Assessment<br>type[Include<br>here assessment<br>method for self-<br>learning<br>component also] | contents | Course<br>outcome<br>Number | Duration<br>In Hours | marks | weig<br>htag<br>e | Venue,<br>DATE<br>&TIME | | 01 | Quiz-1 | Module-<br>1&2 | CO1,C<br>O2,CO<br>3 | 01 | 10 | 05% | Will be<br>announced<br>prior 1<br>week | | 02 | Test 1 | Module<br>1 | CO1 | 1<br>Hour | 30 | 20% | - | | 03 | Test 2 | Module<br>2 | CO2 | 1<br>Hour | 30 | 20% | | | 04 | ASSIGNME NT (Presentation on research articles) | | CO1,C<br>O2,CO<br>3 | 01 | 10 | 05% | Will be<br>announced<br>prior 1<br>week | | 05 | Students Group Presentation on Field Visit | | CO1,C<br>O3 | 01 | 10 | 05% | Will be<br>announced<br>prior 1<br>week | | 06 | Assignment Review of digital /e- resources from Pres. Univ. link given in the References Section- (Mandatory to submit the screenshot of accessing digital | https:// puniversi ty informati csglobal. com /user#/ho me | CO3,C<br>O4 | | 10 | 05% | Will be announced prior 1 week | | | | | | | | | amie | REGISTRAR Registrar | | Otherwise it will not be evaluated) | | | | | | |----|-------------------------------------|---------------------------------|----------------------------|-----|-----|---| | 07 | End term<br>Exam | Complet<br>e course<br>contents | CO1,C<br>O2,CO<br>3<br>CO4 | 100 | 40% | - | ## **COURSE CLEARANCE CRITERIA:** - Minimum of 75% Attendance is most to take up examination. - Minimum of 40% score is must in internal assessment. - Minimum of 30% in the Final Examination. - Make-up Policy: Make-up will be permitted for genuine cases only with prior permission from the Instructor Incharge and approval of Dean, SoE. NOTE: There will be no make-up for ASSIGNMENT and QUIZ. CONTACT TIMINGS IN THE CHAMBER FOR ANY DISCUSSIONS: Monday, 10:40 AM-11:30 AM ## SAMPLE THOUGHT PROVOKING QUESTIONS | Sl.<br>No. | Q. No. | Question | Marks | C.O.<br>NO. | Bloom's Level | |------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|-------------------| | 1 | 1 | Mr. Kamlesh has a UPS system consisting of lead acid battery and he got tired of charging the lead acid battery for long hour. Kindly suggest him different kind of battery to reduces the charging time of battery to minimum. | 10M | CO1 | Comprehensi<br>on | | 2 | 2 | Dr. Ramesh wants to run his petrol engine<br>Scooty Pep+ on battery to save petrol. Kindly<br>suggest him the battery technology that helps<br>him to achieve his objective. | 10M | CO1 | Comprehensi<br>on | ## **Target set for course Outcome attainment:** | Sl.no | C.O.<br>No. | Course Outcomes | Target set for attainment in percentage | |-------|-------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------| | 01 | CO1 | Recognize the basic physical concepts of thermodynamics and kinetics involved in electrochemical reactions. | 55% | | 02 | CO2 | Analyze the characterization methods of batteries and interpret concepts describing battery performance. | 50% | | 03 | CO3 | Describe the recent developments of battery systems. | 60% | | 04 | CO4 | Discuss the requirements of battery systems for automotive applications. | 55% | |----|-----|--------------------------------------------------------------------------|-----| | | | | | Signature of the course Instructor: This course has been duly verified Approved by the D.A.C. Signature of the Chairperson D.A.C.: ## Course Completion Remarks & Self-Assessment.[This has to be filled after the completion of the course] [Please mention about the course coverage details w.r.t. the schedule prepared and implemented. Any specific suggestions to incorporate in the course content. Any Innovative practices followed and its experience. Any specific suggestions from the students about the content, Delivery, Evaluation etc.] | Sl.no. | Activity | Scheduled | Actual | Remarks | |----------|-------------------------|-----------------|------------|----------------------------------------------| | | | Completion Date | Completion | | | | As listed in the course | _ | Date | | | | Schedule | | | | | | | | | | | | Program integration | | | As per the plan | | 01 | Over View of the | 28-03-2022 | 28-03-2022 | | | | course | | | | | | | | | | | 02 | Module: 01 | 7-04-2022 | 7-04-2022 | As per the plan | | | | | | | | 03 | Integration of module 2 | 11-4-2022 | 11-4-2022 | As per the plan | | | | | | | | 04 | Module: 02 | 12-05-2022 | 12-05-2022 | As per the plan | | 0.7 | | 20.04.2022 | 27.04.2022 | | | 05 | Test-1 | 20-04-2022 | 27-04-2022 | Test-1 got postponed by 1 week. | | <u> </u> | Test-1 Paper | | | Pageusa of test meetmonement | | | | | | Because of test postponement. | | 06 | Discussion | 21-04-2022 | 28-04-2022 | | | | | | | | | | | | | | | | Module: 02 | 12-05-2022 | 16-05-2022 | Because of solving some more examples | | 07 | Module: 02 | 12-03-2022 | 10-03-2022 | • | | 07 | | | | related to design parameters based on | | | | | | students request | | 00 | | 16.05.2022 | 17.05.2022 | | | 08 | Course Integration of | 16-05-2022 | 17-05-2022 | As one class delayed in module 2 and it | | | Module:3 | | | followed the same. | | | M 1 1 02 | 00 6 2022 | 00 ( 2022 | D 6 wi 11/2 1 1 | | | Module:03 | 09-6-2022 | 09-6-2022 | Because of getting one additional class as a | | 09 | | | | adjustment of EEE212 course it covered as | | | | | | per the plan. | | | | | 0.0.0 | | | 10 | Test-II | 26-05-2022 | 02-06-2022 | Test-2 got postponed by 1 week. | | | D' | | | D 6 44 | | | Discussion of Test-2 | | | Because of getting one additional class as a | | 11 | paper | 30-05-2022 | 04-05-2022 | adjustment of EEE214 course it covered as | | | | | | per the plan. | | | | | | | | 12 | Module:03 | 09-06-2022 | 09-06-2022 | As per the plan | | | 0 0 1 1 2 2 | | | | | 13 | Case Study / Mini | 02/6/2022 | 02/6/2022 | As per the plan | | | Project | 02, 0, 2022 | 02,0,2022 | | | <u> </u> | 36 1 1 4 ~ | | | | | 14 | Module 4 Course | 20-06-2022 | 20-06-2022 | As per the plan | | | Integration | | 20 00 2022 | | | | | 0015100 | 00151255 | | | 15 | Program integration | 20/6/2022 | 20/6/2022 | As per the plan | | | | | | | Any specific suggestion/Observations on content/coverage/pedagogical methods used etc.: As the semester was too short because of that few examples solved in class and given them as exercise examples. Even only few MATLAB Simulink models were shown in class. ## **Course Outcome Attainment:** | Sl.no | C.O.<br>No. | Course Outcomes | Target set for attainment in | Actual C.O. Attainment | Remarks on attainment | | |-------|-------------|--------------------------------------------------------------------------------|------------------------------|------------------------|-------------------------------------|--| | | NO. | | percentage In Percentag | | &Measures to enhance the attainment | | | 01 | Co1 | Describe the importance of<br>Electric Vehicles in recent<br>trends | 50 | As expected | | | | 02 | Co2 | Discuss the components of<br>Electric Vehicles and<br>Hybrid Electric Vehicles | 55 | 55 57.17 | | | | 03 | Co3 | Summarize the properties of batteries and electric vehicle drive systems | 60 62.98 | | As expected | | | 04 | Co4 | Explain different charging methods of Electric vehicles | 65 64.6 | | As expected | | Signature of the course Instructor This course has been duly verified Approved by the D.A.C. Habo Signature of the Chairperson D.A.C. | Course Code: | Course Title: PI | C's for Automation | | T ON P | | | | | |--------------------|---------------------|-----------------------------------------------------------------------------------|------------------------------|-----------------------|---------------------|--------|----------|---------| | EEE322 | | Discipline & Theory | only | L-T- P-<br>C | 3 | 0 | 0 | 3 | | Version No. | 2.0 | | | | 1 | | | I | | Course Pre- | NIL | | | | | | | | | requisites | | | | | | | | | | Anti-requisites | NIL | | | | | | | | | Course | This course des | scribes about PLC | hardware/soft | tware ar | nd SC | ADA | witl | h the | | Description | communication pr | ommunication protocols and various control systems. The course is both conceptual | | | | | | | | _ | and analytical in r | nature. It develops pro | gramming and | l simulati | on skil | ls. | | | | Course Objective | <u> </u> | he course is to familia | | | | | of PLC | C's for | | | Automation and | l attain <mark>Entreprene</mark> u | <mark>ırial Skills</mark> th | nrough <mark>P</mark> | artici <sub>)</sub> | pativ | e Lea | rning | | | techniques. | | | | | | | | | Course | _ | mpletion of this cour | se the student | ts shall b | e able | to: | | | | Outcomes | | rk protocols that provi | | | | | tion | | | | technologies | r | | <b>J</b> | | | | | | | _ | es for automation app | lications requi | ring spec | ial fun | ction | s. | | | | | automatic control sys | - | | | | | | | | | for various utilities. | _ | | | | | | | Course Content: | 7 11 7 2 2 | | | | | | | | | | Introduction to | | | | | | | | | | Programmable | | | | | | | | | Module 1 | Logic | Assignment | Case study | | | | 8 Sess | ions | | | Controllers: | | | | | | | | | Tonics: Advantage | | of PLC with respect | to relay logic | PLC are | chitect | ıre. I | nnut ( | Dutnut | | _ | LC interfaci | _ | | nemory | | tructi | - | of | | PLC. | | | prant, 11 | iemory | 5 | | | 01 | | | PLC | | | | | | | | | Module 2 | | Quiz | Programmi | nσ | | | 7 Ses | sions | | iviodaic 2 | Methodologies: | Quiz | liogrammin | ····5 | | | 7 50 | SIOIIS | | Topics: Ladder dia | Č | lonal block diagram, S | SFC Instruction | on List ( | reatin | σ lad | der di | aoram | | • | | roduction to IEC6113 | | | | _ | acr an | ugi uii | | | Data | | | | | | | | | Module 3 | Manipulation and | | Simulation | | | | 7 Sess | ions | | | Math instructions | Assignment | | | | | | | | Topics: Math Instr | | ructions, Addition Inst | <br>ruction, Subtra | action Ins | structio | n. M | ultipli | cation | | _ | | er Word-Level Math I | | | | | _ | | | - | | Data Manipulation, | • | | | • | | mpare | | • | | rams, Numerical Data | | • | | | | 1 | | | Introduction to | | | ., | <u>r</u> | | | | | Module 4 | SCADA | Case study | Simulation | | | - | 11 Ses | sions | | Topics: Data acqu | isition system, Ev | olution of SCADA, C | Communication | n Techno | logies | , Mo | nitorin | g and | | Supervisory Funct | ions. Types of Pro | cesses, Structure of C | ontrol System | s, On/Of | f Cont | rol, F | PID Co | ontrol, | | Motion Control | | | • | | | | | | | Targeted Applica | tion: Siemens, AB | BB, Power-grid, Yoko | gawa Electri | c | | | | | | | used: NI Lab-VII | | | | | | | | | Text Books | | | | | | _ | | | | 1. W.Boldon, 'Pro | ogrammable logic o | controllers', 5th Editio | n, Elsevier Ind | lia Pvt. L | td., Ne | w De | elhi, 20 | 011. | | | <del>-</del> | | | | | De | WILL ST | NCY UN | | | | | | | | | (8) | | REGISTRAR Registrar 2. Stuart A.Boyer, "SCADA: 'Supervisory control and Data Acquisition', 4th Edition, ISA, 2010. #### References - 1. Robert Radvanovsky, Jacob Brodsky, "Handbook of SCADA/Control Systems Security", 2nd edition, CRC press, 2016. - 2. G. K. McMillan, Douglas Considine, "Process/Industrial Instruments Hand book", 5th edition, McGraw Hill, New York, 2009. ## Online learning resources - 1. Seminar: https://puniversity.informaticsglobal.com - 2. Case Study: <a href="https://www.plcacademy.com/">https://www.plcacademy.com/</a> - 3. Ebook: <a href="https://electrical-engineering-portal.com/download-center/books-and-guides/electrical-engineering/plc-book">https://electrical-engineering-portal.com/download-center/books-and-guides/electrical-engineering/plc-book</a> Topics relevant to "Entrepreneurial Skills": PLC programming, SCADA for developing Entrepreneurial Skills through Participative Learning techniques. This is attained through assessment component mentioned in course handout. | component mention | component mentioned in course nandout. | | | | | |-------------------|---------------------------------------------------|--|--|--|--| | Catalogue | Mrs. Jisha L K | | | | | | prepared by | | | | | | | Recommended by | BoS No: 12 <sup>th</sup> . BoS held on 27/07/2021 | | | | | | the Board of | | | | | | | Studies on | | | | | | | Date of Approval | Academic Council Meeting No.16, Dated 23/10/21 | | | | | | by the Academic | | | | | | | Council | | | | | | (Established under the Presidency University Act, 2013 of the Karnataka Act 41 of 2013) ## A-2 [2020] COURSE HAND OUT [Revision 01- Nov/2020] School : Engineering Department : Electrical & Electronics Engineering. Date of Issue : 11.03.2022 Name of the Program : B. Tech (EEE) P.R.C. Approval Ref. : PU/AC-16/EEE/2020-2024/2021 Name of the Course : PLC's for Automation. Course Code : EEE 322 Semester : 4<sup>th</sup> Year : 2<sup>nd</sup> Course Credit Structure : 3-0-0-3 Contact Hours : Course Instructor In charge : Course URL : #### **PROGRAM OUTCOMES:** Graduates of the B. Tech. Program in Electrical & Electronics Engineering will be able to: - PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. [H]. - PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. [H] - PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations [L]. - PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions [L]. - PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations [M]. - PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. - PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. - PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. - PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. [L] PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. [L] PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. [L] ## **COURSE PREREQUISITES:** Nil #### **COURSE DESCRIPTION:** This course describes about PLC hardware/software and SCADA with the communication protocols and various control systems. The course is both conceptual and analytical in nature. It develops programming and simulation skills. **COURSE OBJECTIVE:** The objective of the course is to familiarize the learners with the concepts of PLC's for Automation and attain **Entrepreneurial Skills** through **Participative Learning** techniques. ## **COURSE OUTCOMES:** ## After the completion of the course students shall be able to: - CO 1: Explain network protocols that provide interoperability and communication technologies - CO 2: Write PLC codes for automation applications requiring special functions. - CO 3: Use PLC for an automatic control system confining to standards. - CO 4: Apply SCADA for various utilities. #### MAPPING OF C.O. WITH P.O. | CO<br>NO. | PO 1 | PO 2 | PO 3 | PO 4 | PO 5 | PO09 | PO 10 | PO12 | |-----------|------|------|------|------|------|------|-------|------| | 1 | Н | Н | L | L | M | M | L | L | | 2 | Н | Н | L | L | M | M | L | L | | 3 | M | M | M | M | M | L | L | L | | 4 | M | L | L | L | L | L | L | L | #### **COURSE CONTENT (SYLLABUS):** #### Module: 1: **Introduction to Programmable Logic Controllers:** Advantages & disadvantages of PLC with respect to relay logic, PLC architecture, Input Output modules, PLC interfacing with plant, memory structure of PLC. [10 Sessions] [Blooms 'level selected: Comprehension] REGISTRAR #### Module: 2 **PLC Programming Methodologies:** Ladder diagram, STL, functional block diagram, SFC, Instruction List. Creating ladder diagram from process control descriptions, Introduction to IEC61131 international standard for PLC. [10 Sessions] [Blooms 'level selected: Application] ### Module: 3: Math Instructions: Math Instructions, Addition Instruction, Subtraction Instruction, Multiplication Instruction, Division Instruction, Other Word-Level Math Instructions, File Arithmetic Operations. **Data Manipulation Instructions**: Data Manipulation, Data Transfer Operations, Data Compare Instructions, Data Manipulation Programs, Numerical Data I/O Interfaces, Closed-Loop Control [12 Sessions] [Blooms 'level selected: Comprehension] #### Module: 4: **Introduction to SCADA:** Data acquisition system, Evolution of SCADA, Communication Technologies, Monitoring and Supervisory Functions. [10 Sessions] [Blooms 'level selected: Application] #### **DELIVERY PROCEDURE (PEDAGOGY):** **Self-Learning Topics:** - 1. Introduction to IEC61131 international standard for PLC. - 2. Performance Criteria for automation tools. ## **Experiential Learning Topics** 1. Selectable Timed Interrupt, Fault Routine. ## Participative learning 1. Creating ladder diagram from process control descriptions ## **Technology Enabled Learning:** 1. Subroutine Functions, Immediate Input and Immediate Output Instructions #### Note: a. Most of the Topics are covered through Offline Lecture Method with the necessary practical applications. #### **REFERENCE MATERIALS:** #### A). Textbooks: **T1:** W.Boldon, 'Programmable logic controllers', 5th Edition, Elsevier India Pvt. Ltd., New Delhi, 2011. **T2**: Stuart A.Boyer, "SCADA: 'Supervisory control and Data Acquisition', 4th Edition, ISA, 2010. ### B). Reference books: **R1**: Robert Radvanovsky, Jacob Brodsky, "Handbook of SCADA/Control Systems Security", 2nd edition, CRC press, 2016. **R2**: G. K. McMillan, Douglas Considine, "Process/Industrial Instruments Hand book", 5th edition, McGraw Hill, New York, 2009. #### C). Online learning resources - 4. Seminar: <a href="https://puniversity.informaticsglobal.com">https://puniversity.informaticsglobal.com</a> - 5. Case Study: <a href="https://www.plcacademy.com/">https://www.plcacademy.com/</a> - 6. Ebook: <a href="https://electrical-engineering-portal.com/download-center/books-and-guides/electrical-engineering/plc-book">https://electrical-engineering-portal.com/download-center/books-and-guides/electrical-engineering/plc-book</a> #### **GUIDELINES TO STUDENTS:** - v. Maintain a separate note book for class notes. - vi. Be regular to all the classes and maintain minimum 90% of attendance. - vii. Refer online study materials and videos are suggested to watch in the NTPEL site. #### **COURSE SCHEDULE:** | S | | ACTIVITY | STARTING<br>DATE | CONCLUDING<br>DATE | TOTAL<br>NUMBER OF | |-----|----|----------|------------------|--------------------|--------------------| | No. | 0. | | DATE | DATE | PERIODS | | 01 | Over View of the course | 27.01.2022 | 27.01.2022 | 1 | |----|--------------------------|----------------------------------------------------|-------------------------------------------------|-----| | 02 | Module: 01 | 28.01.2022 12.02.2022 | | 8 | | 02 | Module: 02 | 13.02.2022 | 13.02.2022 | 2 | | 02 | Assignment- I | 10 <sup>th</sup> to 14 <sup>th</sup> April<br>2022 | 10 <sup>th</sup> to 14 <sup>th</sup> April 2022 | NA | | 03 | Test-I | 18.02.2022 | 20.02.2022 | NA | | 04 | Test I Paper Discussion | 21.02.2022 | 21.02.2022 | 1 | | 07 | Module: 02 | 26.02.2022 | 02.03.2022 | 5 | | 08 | Module:03 | 02.03.2022 | 19.03.2022 | 7 | | 09 | Quiz 1 | 20.03.2022 | 20.03.2022 | NA | | 10 | Test-II | 23.03.2022 | 26.03.2022 | NA | | 11 | Test II Paper Discussion | 31.03.2022 | 31.03.2022 | 1 | | 12 | Assignment- II | 01.04.2022 to | 01.04.2022 to | NA | | 12 | Assignment- II | 07.04.2022 | 07.04.2022 | INA | | 13 | Module:04 | 01.04.2022 | 20.04.2022 | 11 | ## SCHEDULE OF INSTRUCTION: | Sl.<br>N<br>o | Session<br>No<br>[date if<br>possible] | Lesson Title | Topics | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |---------------|----------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|-----------------------------|---------------------------|-----------| | 50. | 27.01.202 | Program Integration & Course Integration | Discussion on COs, POs, Course Handout | - | - | - | | 51. | S1<br>28.01.202<br>2 | Module No. 1 Introduction to Programmable Logic Controllers: | Introduction | CO1 | PPT,<br>Chalk and<br>Talk | T1 | | 52. | S2<br>30.01.202<br>2 | Introduction to Programmable Logic Controllers | Advantages & disadvantages of PLC with respect to relay logic | CO1 | PPT,<br>Chalk and<br>Talk | T1 | | 53. | S3<br>31.02.202<br>2 | Introduction to Programmable Logic Controllers | PLC architecture | CO1 | PPT,<br>Chalk and<br>Talk | T1 | | 54. | S4<br>02.02.202<br>2 | Introduction to Programmable Logic Controllers | Input Output modules | CO1 | PPT,<br>Chalk and<br>Talk | T1 | | 55. | S5<br>03.02.202<br>2 | Introduction to Programmable Logic Controllers | PLC interfacing with plant | CO1 | PPT,<br>Chalk and<br>Talk | T1 | | 56. | S6<br>07.02.202<br>2 | Introduction to Programmable Logic Controllers | PLC interfacing with plant | CO1 | PPT,<br>Chalk and<br>Talk | T1 | | 57. | \$7<br>11.02.202<br>2 | Introduction to Programmable Logic Controllers | memory structure of PLC. | CO1 | PPT,<br>Chalk and<br>Talk | T1 | | 58. | \$8<br>12.02.202<br>2 | Introduction to Programmable Logic Controllers | memory structure of PLC. | CO1 | PPT,<br>Chalk and<br>Talk | T1 | |-----|------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------|-----------------------------------------------------------| | 59. | CA1 | Module 1 | 10 <sup>th</sup> to 14 <sup>th</sup> April<br>2022 | | | | | 60. | | | Test-1 | | | | | 61. | S9<br>21.02.202<br>2 | Test 1 QP Discussion Module No. 2 | Question paper<br>discussion & Course<br>integration | CO2 | PPT,<br>Chalk and<br>Talk | T1 | | 62. | S10<br>25.02.202<br>2 | PLC Programming<br>Methodologies | Ladder diagram,<br>STL, | CO2 | PPT,<br>Chalk and<br>Talk | T1 | | 63. | S11<br>26.02.202<br>2 | PLC Programming<br>Methodologies | functional block<br>diagram, SFC, | CO2 | PPT,<br>Chalk and<br>Talk | T1 | | 64. | S12<br>28.02.202<br>2 | PLC Programming<br>Methodologies | Creating ladder diagram from process control descriptions, | CO2 | PPT,<br>Chalk and<br>Talk | T1 | | 65. | S13<br>02.03.202<br>2 | PLC Programming<br>Methodologies | Introduction to IEC61131 international standard for PLC. | CO2 | Participati<br>ve<br>learning | T1 | | 66. | S14<br>02.03.202<br>2 | PLC Programming<br>Methodologies | Introduction to IEC61131 international standard for PLC. | CO2 | Participati<br>ve<br>learning | T1 | | 67. | S15<br>03.03.202<br>2 | PLC Programming<br>Methodologies | Ladder diagram | CO2 | Group<br>Discussio<br>n | T1 | | 68. | \$16<br>05.03.202<br>2 | PLC Programming<br>Methodologies | Ladder diagram | CO2 | Group<br>Discussio<br>n | T1 | | | | Self study Topic | international standard for PLC. | | | https://pu<br>niversity.i<br>nformatic<br>sglobal.co<br>m | | 69. | S17<br>08.03.202<br>2 | Module 3: Math Instructions and Data Manipulation Instructions | Course Integration | CO3 | PPT,<br>Chalk and<br>Talk | Т2 | | 70. | S18<br>09.03.202<br>2 | Math Instructions | Addition Instruction, Subtraction Instruction Data Manipulation, Data Transfer Operations, Data Compare Instructions, Data | CO3 | PPT,<br>Chalk and<br>Talk | T2 | | | | <u> </u> | M 1 - 4 | <u> </u> | 1 | | |-----------|-----------|----------------------|-----------------------|----------|-----------|-----| | | | | Manipulation | | | | | | | | Programs, Numerical | | | | | | | | Data I/O Interfaces, | | | | | | 010 | 3.5 d 4. | Closed-Loop Control | GO2 | DDT | TO | | <b>7.</b> | S19 | Math Instructions | Multiplication | CO3 | PPT, | T2 | | 71. | 10.03.202 | | Instruction, Division | | Chalk and | | | | 2 | 35.37 | Instruction | GO2 | Talk | TT2 | | | S20 | Math Instructions | Multiplication | CO3 | PPT, | Т2 | | 72. | 12.03.202 | | Instruction, Division | | Chalk and | | | | 2 | | Instruction | ~~~ | Talk | | | | S21 | Math Instructions | Other Word-Level | CO3 | PPT, | T2 | | 73. | 16.03.202 | | Math Instructions | | Chalk and | | | | 2 | | | | Talk | | | | S22 | Math Instructions | File Arithmetic | CO3 | PPT, | T2 | | 74. | 17.03.202 | | Operations. | | Chalk and | | | | 2 | | | | Talk | | | | S23 | Data Manipulation | Data Manipulation, | CO3 | PPT, | T2 | | 75. | 19.03.202 | Instructions | Data Transfer | | Chalk and | | | | 2 | | Operations | | Talk | | | | S24 | Data Manipulation | Data Compare | CO3 | PPT, | T2 | | 76. | 30.03.202 | Instructions | Instructions | | Chalk and | | | | 2 | Thisti detions | mstructions | | Talk | | | | S25 | Data Manipulation | Data Manipulation | CO3 | PPT, | T2 | | 77. | 31.03.202 | Instructions | Programs, | | Chalk and | | | | 2 | | 110grams, | | Talk | | | | S26 | Data Manipulation | Numerical Data I/O | CO3 | PPT, | T2 | | 78. | 02.04.202 | Instructions | Interfaces | | Chalk and | | | | 2 | | Interfaces | | Talk | | | | S27 | Data Manipulation | Numerical Data I/O | CO3 | PPT, | T2 | | 79. | 04.04.202 | Instructions | Interfaces | | Chalk and | | | | 2 | | | | Talk | | | 80. | | T | Test-2 | <b>r</b> | | | | 81. | CA2 Quiz | 20.03.2022 | 20.03.2022 | CO2,CO3 | Online | | | | S28 | | | | PPT, | | | 82. | 30.03.202 | Test 2 QP discussion | | | Chalk and | | | | 2 | | | | Talk | | | | S29 | Data Manipulation | | CO3 | PPT, | | | 83. | 31.03.202 | Instructions | Closed-Loop Control | | Chalk and | T2 | | | 2 | | | | Talk | | | | S30 | Data Manipulation | Programming | CO3 | PPT, | T2 | | 84. | 02.04.202 | Instructions | practices | | Chalk and | | | | 2 | | practices | | Talk | | | | S31 | Data Manipulation | Programming | CO3 | PPT, | T2 | | 85. | 04.04.202 | Instructions | practices Control | | Chalk and | | | | 2 | | practices Control | | Talk | | | | S32 | Module: 4 | | CO4 | PPT, | T2 | | 86. | 07.04.202 | Introduction to | Course Integration | | Chalk and | | | 00. | 2 | SCADA: | Course integration | | Talk | | | | <u> </u> | | | | | | | | | | | | | | REGISTRAR REGISTRAR | | | | | T | | | |-----|------------------------|-----------------------|----------------------------------------------------------|-----|---------------------------|-----------------------------------------------------------| | 87. | \$33<br>09.04.202<br>2 | Introduction to SCADA | Data acquisition system | CO4 | PPT,<br>Chalk and<br>Talk | T2 | | 88. | S34<br>13.04.202<br>2 | Introduction to SCADA | Data acquisition system | CO4 | PPT,<br>Chalk and<br>Talk | T2 | | 89. | \$35<br>14.04.202<br>2 | Introduction to SCADA | Evolution of SCADA | CO4 | PPT,<br>Chalk and<br>Talk | T2 | | 90. | \$36<br>16.04.202<br>2 | Introduction to SCADA | Evolution of SCADA | CO4 | PPT,<br>Chalk and<br>Talk | T2 | | 91. | \$37<br>20.04.202<br>2 | Introduction to SCADA | Communication<br>Technologies | CO4 | PPT,<br>Chalk and<br>Talk | T2 | | 92. | S38<br>16.04.202<br>2 | Introduction to SCADA | Monitoring and Supervisory Functions. | CO4 | PPT,<br>Chalk and<br>Talk | T2 | | | | Self study Topic | Performance Criteria for automation tools. | | | https://pu<br>niversity.i<br>nformatic<br>sglobal.co<br>m | | 93. | S39<br>26.04.202<br>2 | | Performance Criteria for DCS and other automation tools. | CO4 | PPT,<br>Chalk and<br>Talk | T2 | | 94. | \$40<br>01.05.202<br>2 | Revision | Module 1 | CO1 | PPT,<br>Chalk and<br>Talk | T1 | | 95. | \$40<br>03.05.202<br>2 | Revision | Module 2 | CO2 | PPT,<br>Chalk and<br>Talk | T1 | | 96. | S40<br>06.05.202<br>2 | Revision | Module 3 | CO3 | PPT,<br>Chalk and<br>Talk | T2 | | 97. | 07.05.202 | Revision | Module 4 | CO4 | PPT,<br>Chalk and<br>Talk | T2 | **Topics relevant to "ENTREPRENEURIAL SKILLS":** Statistical evaluation of measurement data, Principle and types of analog and digital voltmeters, ammeters. for Developing **Entrepreneurial Skills** through **Participative Learning Techniques.** This is attained through **Presentation** as mentioned in the Assessment Component. ## **ASSESSMENT SCHEDULE:** | Sl.no | 26Assessment<br>type | contents | Course<br>outcome<br>Number | Duration<br>In<br>Minutes | Marks | Weightage | Venue, Date & Time | |-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------|---------------------------|-------|-----------|----------------------------------------------------| | 1 | Presentation-1 | Module-1 | CO1 | 60 | 20 | 5% | 10 <sup>th</sup> to 14 <sup>th</sup><br>April 2022 | | 2 | Test 1 | Module-1 | CO 1 | 60 | 20 | 15% | 18 <sup>th</sup> to 20 <sup>th</sup><br>April 2022 | | 3 | Quiz | Module-2,3 | CO2, CO3 | 60 | 10 | 5% | 20 <sup>th</sup> May<br>2022 | | 4 | Test 2 | Module- 2 & | CO 2& CO<br>3 | 60 | 20 | 15% | 23 <sup>rd</sup> to 26 <sup>th</sup><br>May.2022 | | 5 | Presentation-2 | Module-3 | CO 3 | 60 | 20 | 5% | 1 <sup>st</sup> to 7 <sup>th</sup> June 2022 | | 6 | Assignment Review of digital / e-resources from Pres. Univ. link given in the References Section -(Mandatory to submit screenshot accessing digital resource. Otherwise it will not be evaluated | international<br>standard for<br>PLC.<br>Performance<br>Criteria for<br>automation<br>tools. | CO2, CO4 | - | 10 | 5% | Second<br>week of<br>June 2022 | | 7 | End Term Final<br>Examination | Module-<br>1,2,3 & 4 | CO1, CO2,<br>CO3, CO4 | 180 | 100 | 50% | 27th June<br>2022 to<br>9th July<br>2022 | ## **COURSE CLEARANCE CRITERIA:** - vi. Minimum of 75% Attendance is most to take up examination. - vii. Minimum of 40% score is must in internal assessment. - viii. Minimum of 30% in the Final Examination. - ix. Minimum of 40% AGGREGATE is must combining continuous assessment and End Term Final Examination. - x. Make-up policy will be only as per academic regulation. - xi. There will be no make-up for ASSIGNMENT and QUIZ # CONTACT TIMINGS IN THE CHAMBER FOR ANY DISCUSSIONS: It will be announced in the class. Interested students may meet the Instructor In-charge during the Chamber Consultation Hour to clear doubts. # SAMPLE THOUGHT PROVOKING QUESTIONS | Sl. No | Question | Marks | CO<br>No | Bloom's Level | |--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|---------------| | 1 | Suppose we have an Allen-Bradley MicroLogix 1000 PLC and two pressure switches we need to connect to it. Trip = 25 PSI Pressure A Determine the necessary contacts on each pressure switch (NO versus NC). | 10 | CO1 | Apply | | 2 | • | | CO2 | Apply | **Signature of the course Instructor** This course has been duly verified Approved by the D.A.C. Signature of the Chairperson D.A.C. | Course Code:<br>EEE3028 | Course Title: Power Sys<br>Type of Course: Discipl<br>Theory only | U | L-P- C | 3 | 0 | 3 | |-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------|-----------------------|-------------------| | Version No. | 1.0 | | | | | <u> </u> | | Course Pre-<br>requisites | Basic concepts of Electr | ical Power Generat | ion, transmiss | ion and | distribut | ion | | <b>Anti-requisites</b> | NIL | | | | | | | Course<br>Description | issues as well as reliabile compreshensive overview transmission and distribution planning will be dealt wanalytical ability. | This course covers power system planning, Economics, operation and management issues as well as reliability in deregulated environment. The course will give a compreshensive overview of power system relaibility. Evaluation of generation, transmission and distribution system relaibility and their impacts on system planning will be dealt with. The course is designed to develop conceptual and analytical ability. | | | | | | Course<br>Objective | The objective of the cours System Planning and Learning techniques. | | he learners wit<br><mark>1eurial Skills</mark> | | • | | | Course | On successful completion | on of this course th | e students sha | all be ab | le to: | | | Outcomes | <ol> <li>Discuss primary components of power system planning, planning methodology for optimum power system expansion and load forecasting.</li> <li>Explain economic appraisal to allocate the resources efficiently and appreciate the investment decisions</li> <li>Discuss expansion of power generation and planning for system energy in the country, evaluation of operating states of transmission system, their associated contingencies and the stability of the system.</li> <li>Discuss principles of distribution planning, supply rules, network development and the system studies</li> </ol> | | | | | | | <b>Course Content:</b> | | | | | | | | Module 1 | Power System & Electricity Forecasting | Assignment | Simulation/Mo<br>and analysis | delling | 10 S | Sessions | | Planning, Enterpri<br>Planning. Load Rec | s, Planning Process, Project<br>se Resources Planning, P<br>quirement, System Load, El<br>– Load Forecasting, Peak I | lanning Tools, Po ectricity Forecastin | wer Planning<br>g, Forecasting | Organiz<br>Techniq | zation, S<br>ues, For | Scenario ecasting | | Module 2 | Power-System<br>Economics | Case Study C | lata Collection | task | 8 5 | Sessions | | Analysis, Transmi<br>Assessment.<br>Generation Expans | , Techno – Economic Viab<br>ssion, Rural Electrifications<br>sion: Generation Capacity<br>odernization of Power Plan | on Investment, To | otal System A | Analysis, | Credit | - Risk | | Module 3 | Transmission Planning | | Data Collection Analysis | n and | 8.5 | Sessions | | Topics: | | ] | | | 0 | | | | | | | | am | SENCY UNI | Transmission Planning Criteria, Right – of – Way, Network Studies, High – Voltage Transmission, HVDC Transmission, Conductors, Sub – Stations, Power Grid, Reactive Power Planning, Energy Storage | Module 4 | Distribution Planning | Assignment/ | Simulation/Data | 12 Sessions | |----------|-----------------------|--------------|-----------------|-------------| | Module 4 | Distribution Flaming | Presentation | Analysis | 12 Sessions | Topics: Distribution Deregulation, Planning Principles, Electricity – Supply Rules, Criteria and Standards, Sub – Transmission, Basic Network, Low Voltage Direct Current Electricity, Up gradation of Existing Lines and Sub – Stations, Network Development, System Studies, Urban Distribution, Rural Electrification. Reliability and Quality: Reliability Models, System Reliability, Reliability and Quality Planning, Functional Zones, Generation Reliability Planning Criteria, Transmission Reliability Criteria, Distribution Reliability, Reliability Evaluation, Grid Reliability, Quality of Supply # **Targeted Application & Tools that can be used:** Application Area is Power System Data collection, Electricity Transmission and Distributed companies, Power Grid and State Electricity Boards Professionally Used Software: Mi Power/ PS CAD #### **Textbooks** - 1. "Power System Planning Technologies and Applications: Concepts, Solutions, and Management" Fawwaz Elkarmi Engineering Science Reference (an imprint of IGI), 2012. - 2. "Power System Planning" by Udit Mamodiya, Dr.Piyush Kumar Shukla - 3. "Electric Power Planning" A. S. Pabla, McGraw Hill, 2 nd Edition, 2016 #### **Reference Books** - 1. "Power Systems Analysis and Design (Analysis and Design)" by Dr. B. R. Gupta. - 2. "Operation and control in power system" by P S R Murthy, B S Publications #### **Online Resources:** - 1. https://www.youtube.com/watch?v=gqgKNVXLf7g&ab\_channel=CUSP - 2. https://www.pdfdrive.com/electric-power-system-planning-e39893329.html - 3. https://nptel.ac.in/courses - 4. <a href="https://puniversity.informaticsglobal.com">https://puniversity.informaticsglobal.com</a> <u>Topics relevant to "ENTREPRENEURIAL SKILLS":</u> Planning Principles, Planning Process, Project Planning Financial Planning, Techno – Economic Viability, Reliability and Quality for developing <u>Entrepreneurial Skills</u> by using <u>Participative Learning techniques</u>. This is attained through assessment component mentioned in course handout. <u>Topics relevant to "HUMAN VALUES AND PROFESSIONAL ETHICS":</u> Transmission Planning Criteria, Right – of – Way, Network Studies, Distribution Deregulation, Planning Principles, Reliability and Quality | Catalogue<br>prepared by | Mr Bishakh Paul | |--------------------------|--------------------------------------------------------------| | Recommended | BoS No: 12 <sup>th</sup> BoS held on 27/7/2021 | | by the Board of | | | Studies on | | | Date of | 16 <sup>th</sup> Academic Council meeting held on 23/10/2021 | | Approval by the | | | Academic | | | Council | | (Established under the Presidency University Act, 2013 of the Karnataka Act 41 of 2013) # A-8[2022] COURSE HAND OUT [Theory Course] SCHOOL: Engineering DEPT.: EEE DATE OF ISSUE: NAME OF THE PROGRAM : B. Tech EEE P.R.C. APPROVAL REF. : PU/AC-16/EEE/2021-2025/2021 SEMESTER/YEAR : 5<sup>th</sup>/3rd COURSE TITLE & CODE : Power System Planning & EEE3028 COURSE CREDIT STRUCTURE : 3-0-3 CONTACT HOURS : COURSE INSTRUCTOR : \COIURSE URL : #### **PROGRAM OUTCOMES:** PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. ## **COURSE PREREQUISITES:** Basic concepts of Electrical Power Generation, transmission and distribution. #### **COURSE DESCRIPTION:** This course covers power system planning, Economics, operation and management issues as well as reliability in deregulated environment. The course will give a comprehensive overview of power system reliability. Evaluation of generation, transmission and distribution system reliability and their impacts on system planning will be dealt with. The course is designed to develop conceptual ability and an in depth understanding of key economic and other concepts related to electric utility planning and provide exposure to modern approaches of electricity planning.. # **COURSE OBJECTIVES:** The objective of the course is to familiarize the learners with the concepts of Power System Planning and attain **Entrepreneurial Skills** through **Participative Learning** techniques. #### **COURSE OUTCOMES:** #### On successful completion of this course the students shall be able to: - 5. Discuss primary components of power system planning, planning methodology for optimum power system expansion and load forecasting. - 6. Understand economic appraisal to allocate the resources efficiently and appreciate the investment decisions - 7. Discuss expansion of power generation and planning for system energy in the country, evaluation of operating states of transmission system, their associated contingencies and the stability of the system. - 4. Discuss principles of distribution planning, supply rules, network development and the system studies # MAPPING OF C.O. WITH P.O: [H-HIGH, M- MODERATE, L-LOW] | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | |------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------| | CO1 | Н | L | Н | L | L | M | M | L | L | M | M | M | | CO 2 | M | L | Н | L | L | M | L | L | L | M | L | М | | CO 3 | M | L | Н | L | Н | L | M | M | M | M | M | L | | CO 4 | M | L | Н | L | Н | L | L | M | L | M | L | L | #### **COURSE CONTENT (SYLLABUS):** # **Module: 1: Power System & Electricity Forecasting** Planning Principles, Planning Process, Project Planning, Power Development, National and Regional Planning, Enterprise Resources Planning, Planning Tools, Power Planning Organization, Scenario Planning. Load Requirement, System Load, Electricity Forecasting, Forecasting Techniques, Forecasting Modelling, Spatial – Load Forecasting, Peak Load - Forecast, Reactive – Load Forecast, Unloading of a System. ## **Module: 2: Power-System Economics** # Topics: Financial Planning, Techno – Economic Viability, Private Participation, Financial Analysis, Economic Analysis, Transmission, Rural Electrification Investment, Total System Analysis, Credit - Risk Assessment. Generation Expansion: Generation Capacity and Energy, Generation Mix, Clean Coal Technologies Renovation and Modernization of Power Plants. ## [8 Hrs.] [Blooms level selected: Application] ### **Module: 3: Transmission Planning** Topics: Transmission Planning Criteria, Right – of – Way, Network Studies, High – Voltage Transmission, HVDC Transmission, Conductors, Sub – Stations, Power Grid, Reactive Power Planning, Energy Storage. ## [8 Hrs.] [Blooms level selected: Application] ## **Module: 4: Distribution Planning** Topics: Distribution Deregulation, Planning Principles, Electricity – Supply Rules, Criteria and Standards, Sub – Transmission, Basic Network, Low Voltage Direct Current Electricity, Up gradation of Existing Lines and Sub – Stations, Network Development, System Studies, Urban Distribution, Rural Electrification. Reliability and Quality: Reliability Models, System Reliability, Reliability and Quality Planning, Functional Zones, Generation Reliability Planning Criteria, Transmission Reliability Criteria, Distribution Reliability, Reliability Evaluation, Grid Reliability, Quality of Supply. ## [12 Hrs.] [Blooms level selected: Comprehension] ## **DELIVERY PROCEDURE (PEDAGOGY):** **Self-learning topics**: Prepare an exhaustive report on important aspects and issues related to power system planning in developing countries like India **Participative Learning:** Prepare a report on methodologies adopted for small power system planning and highly mesh interconnected large grid planning. **Problem Based Learning:** Prepare a report on methodologies adopted for small power system planning and highly mesh interconnected large grid planning. #### **REFERENCE MATERIALS:** # **Textbooks** - 4. "Power System Planning Technologies and Applications: Concepts, Solutions, and Management" Fawwaz Elkarmi Engineering Science Reference (an imprint of IGI), 2012. - 5. "Power System Planning" by Udit Mamodiya, Dr.Piyush Kumar Shukla - 6. "Electric Power Planning" A. S. Pabla, McGraw Hill, 2 nd Edition, 2016 ## References - 3. "Power Systems Analysis and Design (Analysis and Design)" by Dr. B. R. Gupta. - 4. "Operation and control in power system" by P S R Murthy, B S Publications #### **Online Resources:** - 5. <a href="https://www.youtube.com/watch?v=gqgKNVXLf7g&ab\_channel=CUSP">https://www.youtube.com/watch?v=gqgKNVXLf7g&ab\_channel=CUSP</a> - 6. <a href="https://www.pdfdrive.com/electric-power-system-planning-e39893329.html">https://www.pdfdrive.com/electric-power-system-planning-e39893329.html</a> - 7. <a href="https://nptel.ac.in/courses">https://nptel.ac.in/courses</a> - **8.** \_\_https://puniversity.informaticsglobal.com REGISTRAR REGISTRAR # **GUIDELINES TO STUDENTS:** - 1. Those candidates who have expertise in resolving problems and can come up with creative and innovative solutions to potential issues and design work likewise are beneficial for it. - 2. Those students who have a natural interest in Power System can come up with innovative ideas that will be appreciated. # COURSE SCHEDULE FOR THEORY COMPONENT: | Sl. | Activity | Starting<br>Date | Concluding<br>Date | Total<br>Number<br>of<br>Periods | |-----|-------------------------|------------------|--------------------|----------------------------------| | 01 | Over View of the course | | | | | 02 | Module: 01 | | | | | 03 | Module: 02 | | | | | 04 | Mid-Term Examination | | | | | 05 | Module:03 | | | | | 06 | Assignment/Quiz | | | | | 07 | End-term examination | | | | # SCHEDULE OF INSTRUCTION FOR THE THEORY COMPONENT: | S. | Session | Title | Topics | Cou | Delivery | Reference | |----|------------|----------------------------|--------------------|-----|----------|-----------| | No | no[date if | | | rse | Mode | | | • | possible] | | | Out | | | | | | | | com | | | | | | | | e | | | | | | | | Nu | | | | | | | | mbe | | | | | | | | r | | | | 1 | L1 | Program Integration | | CO1 | Lecture | T1, T2 | | | | Power System & Electricity | Planning | CO1 | Lecture | T1, T2 | | | | Forecasting | Principles, | | | | | | | | Planning Process, | | | | | | | | Project Planning, | | | | | | | | Power | | | | | | | | Development, | | | | | | | | National and | | | | | 2 | L2 | | Regional Planning, | | | | | | | Power System & Electricity | Planning | CO1 | Lecture | T1, T2 | | | | Forecasting | Principles, | | | | | | | | Planning Process, | | | | | | | | Project Planning, | | | | | | | | Power | | | | | | | | Development, | | _ | | | 3 | L3 | | National and | | | | | | | | Regional Planning, | | | | |----|-----|----------------------------|-------------------------------------|-----|---------|-------------| | | | Power System & Electricity | Enterprise | CO1 | Lecture | T1, T2 | | | | Forecasting | Resources | | | | | | | | Planning, Planning | | | | | | | | Tools, Power | | | | | | | | Planning | | | | | | | | Organization, | | | | | 4 | L4 | | Scenario Planning | | | | | | | Power System & | Enterprise | CO1 | Lecture | T1, T2 | | | | Electricity Forecasting | Resources | | | | | | | | Planning, Planning | | | | | | | | Tools, Power | | | | | | | | Planning | | | | | | | | Organization, | | | | | 5 | L5 | | Scenario Planning | | | | | | | Power System & Electricity | Load Requirement, | CO1 | Lecture | T1, T2 | | | | Forecasting | System Load, | | | | | | | | Electricity | | | | | | | | Forecasting, | | | | | | | | Forecasting | | | | | | | | Techniques, | | | | | | • . | | Forecasting | | | | | 6 | L6 | <b>D</b> | Modelling | GC: | * | F1 =1 | | | | Power System & | Load | CO1 | Lecture | T1, T2 | | | | Electricity Forecasting | Requirement, | | | | | | | | System Load, | | | | | | | | Electricity | | | | | | | | Forecasting, | | | | | | | | Forecasting | | | | | | | | Techniques, | | | | | 7 | 17 | | Forecasting Modelling | | | | | / | L7 | Power System & Electricity | Modelling Spatial Load | CO1 | Lecture | T1 T2 | | | | Forecasting | Spatial – Load<br>Forecasting, Peak | COI | Lecture | T1, T2 | | | | 1 orceasung | Load - Forecast, | | | | | | | | Reactive – Load | | | | | | | | Forecast, | | | | | | | | Unloading of a | | | | | 8 | L8 | | System. | | | | | | | Power System & Electricity | Spatial – Load | CO1 | Lecture | T1, T2 | | | | Forecasting | Forecasting, Peak | | | -1, 12 | | | | | Load - Forecast, | | | | | | | | Reactive – Load | | | | | | | | Forecast, | | | | | | | | Unloading of a | | | | | 9 | L9 | | System. | | | | | | | Power System & Electricity | Spatial – Load | CO1 | Lecture | T1, T2 | | | | Forecasting | Forecasting, Peak | | | | | | | | Load - Forecast, | | | | | | | | Reactive – Load | | | | | | | | Forecast, | | _ | | | 10 | L10 | | Unloading of a | | | _ ىللىر | | | | | | Į. | | ALL NCY UND | | | | | System. | | | | |----|-------------|---------------------------|--------------------|---------------|----------|-----------| | | | Modul | le I completed | • | <u> </u> | | | | | Power-System Economics | Financial | CO | Lecture | T1, T2 | | | | | Planning, Techno | 2 | | | | | | | – Economic | | | | | 11 | L11 | | Viability | | | | | | | Power-System Economics | Financial | CO | Lecture | T1, T2 | | | | | Planning, Techno | 2 | | | | | | | - Economic | | | | | 12 | L12 | | Viability | | | | | | | Power-System Economics | Private | CO | Lecture | T1, T2 | | | | | Participation, | 2 | | | | | | | Financial | | | | | | | | Analysis, | | | | | | | | Economic | | | | | 13 | L13 | | Analysis | | | | | | | Power-System Economics | Private | CO | Lecture | T1, T2 | | | | | Participation, | 2 | | | | | | | Financial | | | | | | | | Analysis, | | | | | | | | Economic | | | | | 14 | L14 | | Analysis | | | | | | | Power-System Economics | Transmission, | CO | Lecture | T1, T2 | | | | | Rural | 2 | | | | | | | Electrification | | | | | | | | Investment | | | | | | | | analysis, Dynamic | | | | | | | | Response- | | | | | 15 | L15 | | Uncontrolled case | | | | | | | Power-System Economics | Transmission, | СО | Lecture | T1, T2 | | | | · | Rural | 2 | | | | | | | Electrification | | | | | | | | Investment | | | | | 16 | L16 | | | | | | | 10 | 110 | Power-System Economics | Total System | СО | Lecture | T1, T2 | | | | 1 5 Well System Leononnes | Analysis, Credit - | $\frac{2}{2}$ | Lecture | 11,12 | | 17 | L17 | | Risk Assessment. | | | | | 1, | <b>D</b> 11 | Power-System Economics | Total System | СО | Lecture | T1, T2 | | | | 1 5 Well System Leononnes | Analysis, Credit - | 2 | Lecture | 11,12 | | 18 | L18 | | Risk Assessment. | - | | | | | 210 | <br>Modul | e II completed | İ | | | | | | Transmission Planning | Transmission | СО | Lecture | T1, T2 | | | | | Planning Criteria, | 3 | | , <b></b> | | | | | Right – of – Way, | | | | | 19 | L19 | | Network Studies | | | | | | / | Transmission Planning | Transmission | СО | Lecture | T1, T2 | | | | | Planning Criteria, | 2 | | , | | | | | Right – of – Way, | | | | | 20 | L20 | | Network Studies | | | | | 20 | 120 | Transmission Planning | High – Voltage | СО | Lecture | T1, T2 | | | | Transmission Flamming | Transmission, | 2 | Lecture | 11, 12 | | 21 | L21 | | HVDC | | | على | | 1 | 121 | | 11,50 | <u>i</u> | | SWCY UM | | | | | Transmission | | | | |-----|-------|-----------------------|-----------------------|---------|---------|---------| | | | Transmission Planning | High – Voltage | CO | Lecture | T1, T2 | | | | | Transmission, | 2 | | , | | | | | HVDC | | | | | 22 | L22 | | Transmission | | | | | | | Transmission Planning | Conductors, Sub – | CO | Lecture | T1, T2 | | | | | Stations, Power | 2 | Lecture | 11, 12 | | | | | Grid, Reactive | _ | | | | | | | Power Planning, | | | | | 23 | L23 | | Energy Storage | | | | | 23 | 1123 | Transmission Planning | Conductors, Sub – | СО | Lecture | T1, T2 | | | | Transmission Training | Stations, Power | 2 | Lecture | 11, 12 | | | | | Grid, Reactive | 2 | | | | | | | Power Planning, | | | | | 24 | L24 | | Energy Storage | | | | | 24 | L24 | Transmission Planning | Conductors, Sub – | CO | Lastuma | T1 T2 | | | | Transmission Planning | · · | CO<br>2 | Lecture | T1, T2 | | | | | Stations, Power | 2 | | | | | | | Grid, Reactive | | | | | 2.5 | T 0.5 | | Power Planning, | | | | | 25 | L25 | | Energy Storage | ~~ | _ | | | | | Revision | | CO | Lecture | T1, T2 | | 26 | L26 | | | 2 | | | | | | | e III completed | | T _ | T | | | | Distribution Planning | Distribution | CO | Lecture | T1, T2 | | | | | Deregulation, | 2 | | | | | | | Planning | | | | | | | | Principles, | | | | | | | | Electricity – | | | | | 27 | L27 | | Supply Rules | | | | | | | Distribution Planning | Distribution | CO | Lecture | T1, T2 | | | | | Deregulation, | 2 | | | | | | | Planning | | | | | | | | Principles, | | | | | | | | Electricity – | | | | | 28 | L28 | | Supply Rules | | | | | | | Distribution Planning | Criteria and | CO | Lecture | T1, T2 | | | | | Standards, Sub – | 2 | | | | | | | Transmission, | | | | | | | | Basic Network, | | | | | | | | Low Voltage | | | | | | | | Direct Current | | | | | 29 | L29 | | Electricity, | | | | | | | Distribution Planning | Criteria and | CO | Lecture | T1, T2 | | | | | Standards, Sub – | 2 | | | | | | | Transmission, | | | | | | | | Basic Network, | | | | | | | | Low Voltage | | | | | | | | Direct Current | | | | | 30 | L30 | | Electricity, | | | | | | | Distribution Planning | layout & schematic | СО | Lecture | T1, T2 | | | | | diagram for Up | 2 | | | | 31 | L31 | | gradation of Existing | | | 19 - | | | | 1 | F 9 | | | ZNCY UN | | | | | Lines and Sub - | | | | |----|-----|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|--------| | | | | | | | | | | | | Stations, Network | | | | | | | | Development, | | | | | | | | System Studies, | | | | | | | | Urban Distribution, | | | | | | | | Rural | | | | | | | | | | | | | | | | Electrification. | | | | | | | | | | | | | | | | | | | | | | | Distribution Planning | Up gradation of | CO | Lecture | T1, T2 | | | | | Existing Lines and | 2 | | | | | | | Sub – Stations, | | | | | | | | Network | | | | | | | | | | | | | | | | Development, | | | | | | | | System Studies, | | | | | | | | Urban Distribution, | | | | | | | | Rural | | | | | | | | Electrification. | | | | | | | | | | | | | 32 | L32 | | | | | | | | | Distribution Planning | Reliability and | СО | Lecture | T1, T2 | | | | | Quality: | 2 | | - | | | | | Reliability | - | | | | | | | 7 | | | | | | | | Models, System | | | | | | | | Reliability, | | | | | | | | Reliability and | | | | | 33 | L33 | | Quality Planning | | | | | | | Distribution Planning | Reliability and | СО | Lecture | T1, T2 | | | | | Quality: | 2 | | , | | | | | Reliability | 2 | | | | | | | | | | | | | | | Models, System | | | | | | | | Reliability, | | | | | | | | Reliability and | | | | | 34 | L34 | | Quality Planning | | | | | | | Distribution Planning | Reliability and | СО | Lecture | T1, T2 | | | | | Quality: | 2 | | - | | | | | Reliability | _ | | | | | | | | | | | | | | | Models, System | | | | | | | | Reliability, | | | | | | 1 | | Reliability and | | | | | 35 | | | | | I | | | 33 | L35 | | Quality Planning | | | | | 33 | L35 | Distribution Planning | Quality Planning Functional Zones, | СО | Lecture | T1, T2 | | 33 | L35 | Distribution Planning | Functional Zones, | CO<br>2 | Lecture | T1, T2 | | 33 | L35 | Distribution Planning | Functional Zones,<br>Generation | | Lecture | T1, T2 | | 33 | L35 | Distribution Planning | Functional Zones,<br>Generation<br>Reliability | | Lecture | T1, T2 | | 33 | L35 | Distribution Planning | Functional Zones, Generation Reliability Planning Criteria, | | Lecture | T1, T2 | | 33 | L35 | Distribution Planning | Functional Zones, Generation Reliability Planning Criteria, Transmission | | Lecture | T1, T2 | | 33 | L35 | Distribution Planning | Functional Zones, Generation Reliability Planning Criteria, | | Lecture | T1, T2 | | 33 | L35 | Distribution Planning | Functional Zones, Generation Reliability Planning Criteria, Transmission | | Lecture | T1, T2 | | 33 | L35 | Distribution Planning | Functional Zones, Generation Reliability Planning Criteria, Transmission Reliability | | Lecture | T1, T2 | | 33 | L35 | Distribution Planning | Functional Zones, Generation Reliability Planning Criteria, Transmission Reliability Criteria, Distribution | | Lecture | T1, T2 | | 33 | L35 | Distribution Planning | Functional Zones, Generation Reliability Planning Criteria, Transmission Reliability Criteria, Distribution Reliability, | | Lecture | T1, T2 | | 33 | L35 | Distribution Planning | Functional Zones, Generation Reliability Planning Criteria, Transmission Reliability Criteria, Distribution Reliability, Reliability | | Lecture | T1, T2 | | | | Distribution Planning | Functional Zones, Generation Reliability Planning Criteria, Transmission Reliability Criteria, Distribution Reliability, Reliability Evaluation, Grid | | Lecture | T1, T2 | | 36 | L35 | Distribution Planning | Functional Zones, Generation Reliability Planning Criteria, Transmission Reliability Criteria, Distribution Reliability, Reliability | | Lecture | T1, T2 | | | | | Quality of Supply | | | | |----|-----|-----------------------|--------------------|----|---------|--------| | | | | | | | | | | | Distribution Planning | Functional Zones, | CO | Lecture | T1, T2 | | | | | Generation | 2 | | | | | | | Reliability | | | | | | | | Planning Criteria, | | | | | | | | Transmission | | | | | | | | Reliability | | | | | | | | Criteria, | | | | | | | | Distribution | | | | | | | | Reliability, | | | | | | | | Reliability | | | | | | | | Evaluation, Grid | | | | | | | | Reliability, | | | | | 37 | L37 | | Quality of Supply | | | | | | | Distribution Planning | Functional Zones, | CO | Lecture | T1, T2 | | | | | Generation | 2 | | | | | | | Reliability | | | | | | | | Planning Criteria, | | | | | | | | Transmission | | | | | | | | Reliability | | | | | | | | Criteria, | | | | | | | | Distribution | | | | | | | | Reliability, | | | | | | | | Reliability | | | | | | | | Evaluation, Grid | | | | | | | | Reliability, | | | | | 38 | L38 | | Quality of Supply | | | | | | | Modu | ıle IV completed | | | | **Topics relevant to "ENTREPRENEURIAL SKILLS":** Planning Principles, Planning Process, Project Planning Financial Planning, Techno – Economic Viability, Reliability and Quality for developing **Entrepreneurial Skills by** using **Participative Learning techniques.** This is attained through the **Presentation** as mentioned in the assessment component. # ASSESSMENT SCHEDULE FOR THEORY COMPONENT: | | Assessment type | | | | | | | |------------|-------------------------------------------------------------------------------------|----------|-----------------------------|------|-------|-----------|-----------------------------| | Sl.<br>No. | [Include<br>here<br>assessment<br>method for<br>self-learning<br>component<br>also] | Contents | Course<br>outcome<br>Number | (111 | Marks | Weightage | Venue,<br>Date<br>&<br>Time | | | | Enterprise Resources Planning, Planning | | | | | |---|---------------------------|-------------------------------------------|------|-----|-----|--------------| | 1 | Quiz 1 | Tools, Power Planning Organization, | 3 | 0.5 | 20 | 5% | | | | Scenario Planning | | | | | | | | _ | | | | | | | Student | Load Requirement, System Load, | 2 | 0.5 | 20 | 10% | | 2 | <b>Presentation</b> | Electricity Forecasting, Forecasting | | | | | | | | Techniques, Forecasting Modelling | | | | | | | Assignment | https://puniversity.informaticsglobal.com | CO1, | 1/2 | 10 | 5% | | | | | CO2, | | | | | | (Review of | | CO3 | | | | | | Digital/e- | | | | | | | | resources | | | | | | | | from Pres. | | | | | | | | <mark>Univ. link</mark> | | | | | | | | <mark>given in the</mark> | | | | | | | | <b>References</b> | | | | | | | 3 | section- | | | | | | | 3 | (Mandatory | | | | | | | | to submit the | | | | | | | | screenshot of | | | | | | | | accessing | | | | | | | | <b>digital</b> | | | | | | | | resource. | | | | | | | | | | | | | | | | Otherwise it | | | | | | | | will not be | | | | | | | | evaluated.) | | | | | | | | | | | | | | | 4 | Midterm | | | 1.5 | 50 | 25% | | _ | E 14 | | | 1 | 100 | <b>50</b> 07 | | 5 | Endterm | | | 3 | 100 | 50% | | | | | | | 1 | | # **COURSE CLEARANCE & EVALUATION CRITERIA:** - i. Minimum of 75% Attendance is must to take up examination. - ii. Minimum of 30% score is must in Midterm and Final End Term Examination. - iii. However a minimum of 40% of grand total marks or F-grade limit under relative grading, whichever is lower. # **MAKEUP POLICY:** If the student misses an evaluation component, he/she may be granted a make-up. In case of an absence that is foreseen, make-up request should be personally made to the Instructor-in-Charge, well ahead of the scheduled evaluation component. Reasons for unanticipated absence that qualify a student to apply for make-up include medical emergencies or personal exigencies. In such an event, the student should contact the Instructor-in-Charge as soon as practically possible. #### CONTACT TIMINGS IN THE CHAMBER FOR ANY DISCUSSIONS: It will be announced in the class. Interested students may meet the Instructor In-charge during the Chamber Consultation Hour to clear doubts. # **Sample Thought Provoking Questions [For Theory Component]:** | SI<br>No. | Question | Marks | Course<br>Outcome<br>No. | Bloom's<br>Level | |-----------|--------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------|------------------| | 1 | Describe the structure of power system indicating the power system components and types | 10 | 1 | Application | | 2 | With the help of block diagram, explain distributed power generation planning. List planoptions, uncertainties and attributes. | 10 | 2 | Application | | 3 | What is co-generation? Describe the two techniques of cogeneration | 10 | 3 | Comprehension | | 4 | Discuss in brief rational tariff | 10 | 4 | Comprehension | # **Target set for course Outcome attainment:** | Sl.<br>No | C.O.<br>No. | Course Outcomes | Target set for attainment in percentage | |-----------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------| | 01 | 1 | Discuss primary components of power system planning, planning methodology for optimum power system expansion and load forecasting. | 50% | | 02 | 2 | Understand economic appraisal to allocate the resources efficiently and appreciate the investment decisions | 50% | | 03 | 3 | Discuss expansion of power generation and planning for system energy in the country, evaluation of operating states of transmission system, their associated contingencies and the stability of the system. | 50% | | 04 | 4 | Discuss principles of distribution planning, supply rules, network development and the system studies | 50% | # **Signature of the Course Instructor** This course has been duly verified Approved by the D.A.C. Signature of the Chairperson D.A.C. | <b>Course Code:</b> | <b>Course Title: Elect</b> | tric Vehicle | | | | | | | | |-------------------------|---------------------------------------|---------------------------------------------------------------|--------------|---------------------|-------------------------|-------------|----------|--|--| | EEE3027 | Technology | | | L-P-C | 3 | 0 | 3 | | | | | Type of Course: 1]. 2] | . Discipline Electiv<br>. Theory only | ve, | | | | | | | | Version No. | 2.0 | | | | | | | | | | Course Pre- | Basics of Electric cir | Basics of Electric circuits, Fundamentals of DC and AC motors | | | | | | | | | requisites | | | | | | | | | | | Anti-requisites | NIL | | | | | | | | | | Course | This course introduc | ces the fundamenta | l con | cepts, princ | ciples, analy | ysis and de | esign of | | | | Description | hybrid and electric | vehicles. This co | ourse | helps stu | dents to un | nderstand | vehicle | | | | | mechanics and work | - | | | | | | | | | | them to analyze di | | | | | | | | | | | applications. Also, it | - | - | _ | _ | _ | | | | | | its control for applica | | | _ | - | | | | | | | conceptual and anal | • | | | _ | | ical and | | | | G 011 41 | computing. The cour | _ | | _ | • | | T1 | | | | <b>Course Objective</b> | The objective of the | | | | | | | | | | | Vehicles and attain | n <b>Entrepreneuri</b> a | ai Si | throu <sub>g</sub> | gn <mark>Partici</mark> | pative Lo | earning | | | | | techniques. | | | | | | | | | | <b>Course Out Comes</b> | On successful comp | oletion of the cour | se th | e students | shall be ab | le to: | | | | | | 1. Describe | e the fundamental l | laws | and vehicle | mechanics | | | | | | | 2. Explain | the basics of electr | ric an | d hybrid el | ectric vehic | les, their | | | | | | architec | ture, technologies | and f | undamenta | ls. | | | | | | | 3. Analyze | DC and AC drive | topo | logies used | for electric | vehicle | | | | | | applicat | ion. | | | | | | | | | | 4. Discuss | different energy st | orage | e technolog | ies used for | hybrid el | ectric | | | | | vehicles | and their control. | | | | | | | | | <b>Course Content:</b> | | | | | | | | | | | | Introduction and | Assignment | Com | putation ar | nd Data | | | | | | Module 1 | Vehicle | | Anal | • | Id Data | of Sess | ions: 6 | | | | | Fundamentals | | | | | | | | | | Introduction : Envir | • | ~ | | - | | | nentals: | | | | General Description of | | | | ynamic equ | ation, tracti | ve force | | | | | Determination; vehic | le parameters and per | rformance metrics. | | | | | | | | | Module 2 | Electric and Hybrid Electric Vehicles | Quiz | Data<br>Anal | collection<br>lysis | and | of Sessio | ons: 10 | | | | Electric Vehicles: Ar | rchitecture of an elec | etric vehicle, essen | tials | and perfor | mance of e | lectric vel | hicles – | | | | Traction motor chara | acteristics, tractive e | ffort, transmission | requ | irements, | vehicle per | formance, | energy | | | | consumption, advanta | age and limitations | | | | | | | | | | Hybrid electric drive | trains: Concepts, arch | nitecture, design, c | ontro | l strategies | , merits and | demerits | , Sizing | | | | of major components | | | | | | | | | | | Module 3 | Electric Propulsion<br>Systems | Case study | Simu anal | ulation and<br>ysis | data | o. of Ses | sions:8 | | | | _ | Systems: DC motor | | moto | or drives a | nd permane | nt magne | t motor | | | | drives, switched and | synchronous reluctan | ice | | | | | | | | | Module 4 | Energy storage<br>Devices | Assignment | D | ata collect | ion | o. of Ses | sions:8 | | | | | | <del>-</del> | | <del></del> | | - | | | | Energy storage Devices: Electrochemical batteries — Reactions, thermodynamic voltage, lead-acid batteries, nickel based batteries, lithium based batteries, flywheel and ultra-capacitors, Battery management systems. # **Targeted Application & Tools that can be used:** Application: Automotive industry. Software tools: Matlab-Simulink #### **Text Book** - 1.Mehrdad Ehsani, YiminGao, sebastien E. Gay and Ali Emadi, —Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design CRC Press, 2009. - 2. Iqbal Husain, —Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2011, Second Edition. #### References - 1. James Larminie and John Loury, —Electric Vehicle Technology-Explainedl, John Wiley & Sons Ltd., 2003, Second Edition. - 2. C.C. Chan and K.T. Chanu Modern Electric Vehicle Technology, OXFORD University, 2011 - 3. Sheldon S. Williamson,- Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles, Springer,2013 - 4. Chris Mi, M. A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2011, Second Edition # **Online resources:** - 1. <a href="https://nptel.ac.in/courses/108/102/108102121/">https://nptel.ac.in/courses/108/102/108102121/</a> - 2. https://nptel.ac.in/courses/108/106/108106170/ - 3. IEEE Explore School of Engineering - 4. <a href="https://www.coursera.org/learn/electric-vehicles-mobility">https://www.coursera.org/learn/electric-vehicles-mobility</a> - 5. Seminar: <a href="https://puniversity.informaticsglobal.com:2069/search/searchresult.jsp?newsearch=true">https://puniversity.informaticsglobal.com:2069/search/searchresult.jsp?newsearch=true</a> &queryText=ELECTRIC%20VEHICLES - 6. Video: <a href="https://www.youtube.com/watch?v=GHGXy\_sjbgQ">https://www.youtube.com/watch?v=GHGXy\_sjbgQ</a> - 7. Text book of Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, Infrastructure and the Market, Gianfranco Pistoia, 1st ed. Amsterdam: Elsevier. 2010 <a href="https://puniversity.informaticsglobal.com:2284/ehost/detail/vid=0&sid=52da4e6e-8813-45d5-87f9-">https://puniversity.informaticsglobal.com:2284/ehost/detail/vid=0&sid=52da4e6e-8813-45d5-87f9-</a> - $\underline{73b9f493f358\%40redis\&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ\%3d\%3d\#AN=342445\&db=nleb\underline{k}$ # **Case Study:** - I. <a href="https://www.simpli.com/answers">https://www.simpli.com/answers</a> - II. <a href="https://www.upgrad.com/ev\_technology/iit-delhi">https://www.upgrad.com/ev\_technology/iit-delhi</a> - III. <a href="https://www.coursera.org/">https://www.coursera.org/</a> Topics relevant to "ENTREPRENEURIAL SKILLS": Vehicle fundamentals, total tractive effort calculation and design of drive train for different vehicle architectures for developing Entrepreneurial Skills through Participative Learning techniques. This is attained through assessment component mentioned in course handout. | Catalogue prepared | Ms. Ragasudha C P | |----------------------------|------------------------------------------------------------| | by | | | Recommended by | BoS No: 14 <sup>th</sup> BoS held on 22/2/2022 | | the Board of Studies | | | on | | | <b>Date of Approval by</b> | 18 <sup>th</sup> Academic Council meeting held on 3/8/2022 | | the Academic | | | Council | | (Established under the Presidency University Act, 2013 of the Karnataka Act 41 of 2013) # A-2[2020] COURSE HAND OUT SCHOOL: Engineering DEPT.: EEE DATE OF ISSUE: 11/03/2022 NAME OF THE PROGRAM : B.TECH (EEE) P.R.C. APPROVAL REF. : PU/AC-16/EEE/2021-2025/2021 SEMESTER/YEAR : II / 1<sup>st</sup> COURSE TITLE & CODE : Electric Vehicle Technology & EEE3027 COURSE CREDIT STRUCTURE : 3-0-3 CONTACT HOURS : 3 (Mon 2<sup>nd</sup> hr, Wed 3<sup>rd</sup> hr, Thu 4<sup>th</sup> hr) COURSE INSTRUCTOR : Mr. K Sreekanth Reddy COIURSE URL : https://www.edhitch.com #### **PROGRAM OUTCOMES:** Graduates of the B.Tech. Program in Electrical and Electronics Engineering will be able to: PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. (H) PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.(H) PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. **PO4.** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.(L) **PO6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. **PO7.** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. **PO8.** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. **PO9.** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.(L) **PO11.** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. # **COURSE PREREQUISITES:** Basics of Electric circuits, Fundamentals of DC and AC motors #### **COURSE DESCRIPTION:** This course introduces the fundamental concepts, principles, analysis and design of hybrid and electric vehicles. This course helps to understand vehicle mechanics and working of Electric Vehicles and recent trends. The course enables them to analyze different power converter topology used for electric vehicle applications. Also, it provides the ability to develop the electric propulsion unit and its control for application of electric vehicles through assignments. The course is both conceptual and analytical in nature and needs fair knowledge of mathematical and computing. The course develops the critical thinking and analytical skills. **COURSE OBJECTIVE:** The objective of the course is to familiarize the learners with the concepts of Electric Vehicles and attain **Entrepreneurial Skills** through **Participative Learning** techniques. **COURSE OUTCOMES:** On successful completion of the course the students shall be able to: - 1. Describe the fundamental laws and vehicle mechanics. - 2. Explain the basics of electric and hybrid electric vehicles, their architecture, technologies and fundamentals. - 3. Summarize DC and AC drive topologies used for electric vehicle application. - 4. Discuss different energy storage technologies used for hybrid electric vehicles and their control. # MAPPING OF C.O. WITH P.O.: [H-HIGH, M-MODERATE, L-LOW] | C.O.N0. | P.O.01 | P.O.02 | P.O.05 | P.O.10 | P.O.12 | |---------|--------|--------|--------|--------|--------| | 1 | Н | Н | | | L | | 2 | Н | Н | | | L | | 3 | M | M | L | L | 0 | | 4 | M | M | L | L | L | |---|---|---|---|---|---| | | | | | | | #### **COURSE CONTENT (SYLLABUS):** #### **MODULE: 1: INTRODUCTION AND VEHICLE FUNDAMENTALS** Introduction: Environmental Impact and History of Modern Transportation Vehicle fundamentals: General Description of Vehicle Movement, Vehicle Resistance, dynamic equation, tractive force Determination; vehicle parameters and performance metrics. [6-Hrs] [Blooms 'level selected: Knowledge] #### **MODULE: 2: ELECTRIC AND HYBRID ELECTRIC VEHICLES** Electric Vehicles: Architecture of an electric vehicle, essentials and performance of electric vehicles – Traction motor characteristics, tractive effort, transmission requirements, vehicle performance, energy consumption, advantage and limitations Hybrid electric drivetrains: Concepts, architecture, design, control strategies, merits and demerits, Sizing of major components. [9-Hrs] [Blooms 'level selected: Comprehension] #### MODULE: 3: ELECTRIC PROPULSION SYSTEMS Electric Propulsion Systems: DC motor drives, induction motor drives and permanent magnet motor drives, switched reluctance **and** BLDC motor drives [7Hrs] [Blooms 'level selected: Comprehension] # **MODULE: 4: ENERGY STORAGE DEVICES** Energy storage Devices: Electrochemical batteries – Reactions, thermodynamic voltage, lead-acid batteries, nickel based batteries, lithium based batteries, flywheel and ultra-capacitors, Battery management systems. [7-Hrs] [Blooms 'level selected: Comprehension] REGISTRAR #### **DELIVERY PROCEDURE (PEDAGOGY):** # **Topics for Self-Learning:** - 12. Selection of wires for EVs. - 13. SOC of Battery # **Experiential Learning Topics:** 7. Vehicle dynamics using MATLAB Simulink #### Note All the Topics will be covered through Lecture Method. - **10.** E-materials: - 8. https://nptel.ac.in/courses/108/102/108102121/ - 9. https://nptel.ac.in/courses/108/106/108106170/ - 10. IEEE Explore School of Engineering - 11. https://www.coursera.org/learn/electric-vehicles-mobility - 12. Seminar: <a href="https://puniversity.informaticsglobal.com:2069/search/searchresult.jsp?newsearch=true&queryText=ELECTRIC%20VEHICLES">https://puniversity.informaticsglobal.com:2069/search/searchresult.jsp?newsearch=true&queryText=ELECTRIC%20VEHICLES</a> - 13. Video: <a href="https://www.youtube.com/watch?v=GHGXy\_sjbgQ">https://www.youtube.com/watch?v=GHGXy\_sjbgQ</a> - 14. Text book of Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, Infrastructure and the Market, Gianfranco Pistoia, 1st ed. Amsterdam: Elsevier. 2010 <a href="https://puniversity.informaticsglobal.com:2284/ehost/detail/detail?vid=0&sid=52da4e6e-8813-45d5-87f9-73b9f493f358%40redis&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#AN=342445&db=nlebk">https://puniversity.informaticsglobal.com:2284/ehost/detail/detail?vid=0&sid=52da4e6e-8813-45d5-87f9-73b9f493f358%40redis&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#AN=342445&db=nlebk</a> ## **Case Study:** IV. https://www.simpli.com/answers - V. https://www.upgrad.com/ev\_technology/iit-delhi - VI. https://www.coursera.org/ #### **REFERENCE MATERIALS:** #### **Textbooks:** T1: Mehrdad Ehsani, YiminGao, sebastien E. Gay and Ali Emadi, —Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Designl, CRC Press, 2009. T2:Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2011.2<sup>nd</sup> edition. #### **Reference book(s):** - 1. James Larminie and John Loury, —Electric Vehicle Technology-Explainedl, John Wiley & Sons Ltd., 2003, Second Edition. - 2.C.C. Chan and K.T. Chanu Modern Electric Vehicle Technology, OXFORD University, 2011 - 3.Sheldon S. Williamson,- Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles, Springer,2013 - 4. Chris Mi, M. A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2011, Second Edition #### Other resources: <u>IEEE Explore - School of Engineering</u> https://puniversity.informaticsglobal.com/login . # **GUIDELINES TO STUDENTS:** (Here mention a few tips to study this course effectively) - The students are advised to be very much regular to the online classes and sincerely attempt the learnings listed in the Pedagogical section. - The students are advised to take down the notes legibly which serves as a firsthand information to study and revise lecture topics on day to day basis. - The students are advised to visit the Edhitch portal and Microsoft teams on a regular basis to study the supporting materials shared by the course instructors. - The students are advised to use the journals, technical magazines and other relevant materials. - The students are advised to watch the video lectures available online to understand and review the concepts delivered in the class as well as problems assigned for self-learning topics. COURSE SCHEDULE: (This is a macro level planning. Mention the unit wise expected starting and ending dates along with the tests/assignments/quiz and any other activities) [allot about 75% for delivary,about10 to 12% for Evaluation Discussion, about 10 to 15% on integrating the learning Modules within the course and to the program] | Sl. No. | ACTIVITY | STARTING | CONCLUDING | TOTAL NUMBER | |---------|----------------------------------------------|------------|------------|--------------| | | | DATE | DATE | OF PERIODS | | 01 | Program Integration Over View of the course | 23-03-2022 | 24-03-2022 | 2 | | 02 | Module: 01 Content | 28-03-2022 | 8-04-2022 | 8 | | 03 | Module:2 Course Integration & content | 11-04-2022 | 05-05-2022 | 10 | REGISTRAR Registrar | 04 | Mid Term <b>Test</b> | 09-05-2022 | 12-05-2022 | | |----|------------------------------------------|------------|------------|----| | 05 | Test Paper Discussion | 16-05-2022 | 16-05-2022 | 1 | | 06 | Module:03 Course Integration and content | 18-05-2022 | 08-06-2022 | 8 | | 07 | Module:04 Course Integration and content | 09-06-2022 | 20-02-2022 | 6 | | 08 | Case Study | 02-04-2022 | 02-06-2022 | NA | | 09 | Program integration | 20/6/2021 | 20/6/2022 | 01 | # SCHEDULE OF INSTRUCTION: # MODULE: 1: INTRODUCTION AND VEHICLE FUNDAMENTALS | Sl.<br>no | Session no | Lesson Title | Topics | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |-----------|----------------|----------------------------------------|---------------------------------------------|-----------------------------|------------------|-----------| | 1 | S1<br>23-03-22 | Program<br>Integration | Introduction to course | | | | | 2 | S2<br>24-03-22 | Course<br>Integration | Environmental Impact | | | | | 3 | S3<br>28-3-22 | | History of Modern<br>Transportation Vehicle | CO. 1 | Lecture<br>Mode | T1:Ch.1 | | | S4<br>30-3-22 | History of<br>Modern<br>Transportation | General Description of<br>Vehicle Movement | | | | | 4 | S5<br>31-3-22 | | Vehicle Resistance, | CO. 1 | Lecture<br>Mode | T1:Ch.2 | | 5 | \$6<br>4-4-22 | General Description of | Dynamic equation. | CO. 1 | Lecture<br>Mode | T1:Ch.2 | | 6 | S7<br>6-4-22 | Vehicle<br>Movement | tractive force Determination; | CO. 1 | Lecture<br>Mode | T1:Ch.2 | | 7 | S8<br>7-4-22 | | vehicle parameters and performance metrics. | CO. 1 | Lecture<br>Mode | T1:Ch.2 | | | S9 | vehicle para | meters and | | Lecture | | | | |---|-----------------------|--------------|------------|-------|---------|---------|--|--| | 8 | | performance | metrics, | CO. 1 | Mode | T1:Ch.2 | | | | | 8-4-22 | problem solv | ing | | | | | | | | Module 1 is completed | | | | | | | | | | | | | | | | | | # MODULE: 2: ELECTRIC AND HYBRID ELECTRIC VEHICLES | Sl.<br>no | Session no | Lesson Title | Topics | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |-----------|----------------|-----------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|------------------| | 1 | S10<br>11-4-22 | Course<br>Integration | | | | | | 2 | S11<br>13-4-22 | | Electric Vehicles:<br>Architecture of an electric | CO. 2 | Lecture<br>Mode | T1.Ch.5 | | 3 | S12<br>18-4-22 | | essentials and performance of electric vehicles | CO. 2 | Lecture<br>Mode | T1.Ch.5 | | | S13<br>20-4-22 | | Traction motor characteristics, tractive effort, | | | T1.Ch.4 | | 4 | S14<br>21-4-22 | Design<br>parameters | vehicle-transmission<br>requirements, vehicle<br>performance, energy<br>consumption, advantage<br>and limitations | CO. 2 | Lecture<br>Mode | Technical papers | | 5 | S15<br>25-4-22 | | Hybrid electric drivetrains: Concepts, architecture | CO. 2 | Lecture<br>Mode | T1.Ch.6 | | 6 | S16<br>27-4-22 | | Hybrid electric drivetrains: Concepts, architecture | CO. 2 | Lecture<br>Mode | T1.Ch.6 | | 7 | S17<br>28-4-22 | | tractive effort, transmission requirement | CO. 2 | Lecture<br>Mode | T1.Ch.10 | | | 4-5-22 | | transmission requ | effort,<br>nirement | CO. 2 | Lecture<br>Mode | T1.Ch.10 | |----|----------------|------------|---------------------------------------|---------------------|-------|-----------------|-----------------------------------------------------| | 8 | S19<br>5-5-22 | | merits and<br>Sizing of<br>components | demerits,<br>major | CO. 2 | Lecture<br>Mode | T1.Ch.6 | | 9 | S20<br>16-5-22 | | Mid Term<br>Discussion | Paper | | | | | 10 | S21<br>18-5-22 | | Problem Solving | | CO. 2 | Lecture<br>Mode | Technical papers | | | Self-Lear | ning Topic | Selection of wire | s for EVs. | | | IEEE Explore - School of Engineering https://punive | | | | | Module 2 is com | ploted | | | rsity.informat<br>icsglobal.co<br>m/login | # **MODULE: 3: ELECTRIC PROPULSION SYSTEMS** | Sl.<br>no | Session no | Lesson Title | Topics | | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |-----------|----------------|-----------------------------------|----------------------|------------|-----------------------------|------------------|-----------| | 1 | S22<br>19-5-22 | Course<br>Integration | Electric<br>Systems: | Propulsion | | | | | 2 | S23<br>23-5-22 | Electric<br>Propulsion<br>Systems | Electric<br>Systems: | Propulsion | | | | | 3 | S24<br>25-5-22 | | DC motor basic | es | CO. 3 | Lecture<br>Mode | T1.Ch.7 | | 4 | S25<br>26-5-22 | | DC motor basic | es | CO. 3 | Lecture<br>Mode | Text Book | | 5 | S26<br>30-5-22 | induction motor drives | CO. 3 | Lecture<br>Mode | T1.Ch.7 | |----|-----------------|-------------------------------------|-------|-----------------|------------------| | 6 | S27<br>1-06-22 | permanent magnet motor drives | CO. 3 | Lecture<br>Mode | T1.Ch.7 | | 7 | S28<br>02-06-22 | permanent magnet motor drives | CO. 3 | Lecture<br>Mode | T1.Ch.7 | | 8 | S29<br>4-6-22 | Motors used in Different cars | CO. 3 | Lecture<br>Mode | Technical papers | | 9 | S30<br>5-6-2022 | switched and synchronous reluctance | CO. 3 | Lecture<br>Mode | T1.Ch.7 | | 10 | S31<br>6-6-2022 | BLDC motor drives | CO. 3 | Lecture<br>Mode | T1.Ch.7 | | | | Case study submission | | | | Module 3 is completed # **MODULE: 4: ENERGY STORAGE DEVICES** | Sl.<br>no | Session no | Lesson Title | Topics | Course<br>Outcome<br>Number | Delivery<br>Mode | Reference | |-----------|----------------|---------------------|---------------------------------------------|-----------------------------|------------------|-----------| | | S32 | Course | Batteries | | | | | 1 | 8-6-22 | Integration | | | | | | | S33 | Energy | Electrochemical batteries | | Lecture | | | 2 | 9-6-22 | storage<br>Devices: | - Reactions, thermodynamic voltage | CO .4 | Mode | T1.Ch.13 | | 3 | S34<br>13-6-22 | | lead-acid batteries, nickel based batteries | CO .4 | Lecture<br>Mode | T1.Ch.13 | | 4 | S35<br>15-6-22 | | lithium base | d batter | ies | CO .4 | Lecture<br>Mode | Technical papers | |---|-----------------------|---------|------------------------------------|----------|--------|-------|-----------------|-----------------------------------------------------------------------------------------| | 5 | S36<br>16-6-22 | | flywheel<br>capacitors | and | ultra- | CO .4 | Lecture<br>Mode | Technical papers | | | Self Learnin | g Topic | SOC of Batt | ery | | | | IEEE Explore - School of Engineering https://puniv ersity.inform aticsglobal.c om/login | | 6 | S37<br>20-6-22 | | Battery man systems. | agemen | t | CO .4 | Lecture<br>Mode | Technical papers | | 7 | S38<br>20-6-22 | | Battery man systems. Program Into | | | CO .4 | Lecture<br>Mode | Technical papers | | | Module 4 is completed | | | | | | | | **Topics relevant to "ENTREPRENEURIAL SKILLS":** Vehicle fundamentals, total tractive effort calculation and design of drive train for different vehicle architectures for developing **Entrepreneurial Skills** through **Participative Learning techniques.** This is attained through the **Presentation** as mentioned in the assessment component. # **ASSESSMENT SCHEDULE:** | S. No. | Assessment Type | Contents | CO<br>Number | Duratio<br>n<br>In Hours | Mar<br>ks | Weightag<br>e | Venue,<br>DATE<br>&TIME | |--------|------------------------------|---------------------------------------|------------------|--------------------------|-----------|---------------|----------------------------------------| | 1 | Case Study -<br>Presentation | Topic can be selected from any Module | CO 2 and<br>CO 4 | - | 30 | 15% | 4 <sup>th</sup> Week<br>of May<br>2022 | | 2 | Midterm | M1, M2 | CO1,2 | 90<br>Minutes | 50 | 25% | 9-5-2022 to<br>12-05-<br>2022 | | 3 | Assignement as | Mentioned. | CO3 | -NA- | 20 | 10% | May | 3 <sup>rd</sup> | |---|---------------------|-------------|---------|---------|-----|-----|-----------|-----------------| | | self-Learning | | | | | | week | | | | topics | | | | | | | | | | | | | | | | | | | | Review of | | | | | | | | | | digital/e-resources | | | | | | | | | | from Pres. | | | | | | | | | | Univ.link given in | | | | | | | | | | the references | | | | | | | | | | section | | | | | | | | | | (Mandatory to | | | | | | | | | | submit the | | | | | | | | | | screenshots of | | | | | | | | | | accessing digital | | | | | | | | | | Resource. | | | | | | | | | | Otherwise it will | | | | | | | | | | not be evaluated | | | | | | | | | | | | | | | | | | | 4 | End Term Exam | All modules | CO | 3 hours | 100 | 50% | 27-06- | | | | | | 1,2,3,4 | | | | 2022 to 0 | )9- | | | | | | | | | 07-2022 | | | | | | | | | | | | COURSE CLEARANCE CRITERIA: (Here mention the minimum requirements of attendance, marks in continuous assessment & term end examination, make up exam policy and other details as per the academic regulations & PRC): - Minimum of 75% Attendance is must to take up examination. - Minimum of 40% score is must in Midterm and Final End Term Examination. - However a minimum of 50% of grand total marks or F-grade limit under relative grading, whichever is lower. - Make up policy is applicable only as per academic regulation - There will be no make-up for ASSIGNMENT and QUIZ. #### **MAKEUP POLICY:** If the student misses an evaluation component, he/she may be granted a make-up. In case of an absence that is foreseen, make-up request should be personally made to the Instructor-in-Charge, well ahead of the scheduled evaluation component. Reasons for unanticipated absence that qualify a student to apply for make-up include medical emergencies or personal exigencies. In such an event, the student should contact the Instructor-in-Charge as soon as practically possible. # CONTACT TIMINGS IN THE CHAMBER FOR ANY DISCUSSIONS: Interested students may contact the Instructor In-charge during the student free Hour and Wednesday, Friday 3:00-4:00 pm to clear doubts. SAMPLE THOUGHT PROVOKING QUESTIONS: (Here type sample typical questions for students 'reference) | SL | QUESTION | MARKS | COURSE | BLOOM'S LEVEL | |----|----------|-------|---------|---------------| | NO | | | OUTCOME | | | | | | NO. | | | | | | | | | 1 | What would happen to the rolling resistance (Frr) and the aerodynamic resistance(Fad) if the vehicle mass increase 50% and frontal area decrease 20%? | 8 | 1 | Knowledge | |---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|---------------| | 2 | Let us assume a EV which is operating at a vehicle speed of 100 kilometer per hour with the drag coefficient of 0.2, frontal area of 3 meter square, air density of 1.2 kg per meter cube and the energy available in the batteries is 20 kilo Watt hour. So what will be range if we having this kind of system parameters with no wind and with a opposing wind at 10 kilometer per hour. | 10 | 2 | Comprehension | | 3 | Due to the variations in HEV configurations, different power control strategies are necessary to regulate the power flow to or from different components. Identify the operating mode of the following parallel hybrid system | 10 | 2 | Comprehension | | | Comment on your answer. | | | | | 4 | Name different types of energy sources used in electric vehicles and explain how to size the power supply for any given direct drive electric two or three wheelers? | 10 | 3 | Comprehension | | 5 | Can you think of a problem in storing liquid hydrogen inside a car? Justify your answer. | 10 | 4 | Comprehension | # Target set for course Outcome attainment: | Sl.no | C.O. | Course Outcomes | Target | set | for | |-------|------|---------------------------------------------------------------|----------|-----|-----| | | No. | | attainme | nt | in | | | | | percenta | ge | | | | | | | | | | | | | | | | | | | | | | | | 01 | Co1 | Describe the importance of Electric Vehicles in recent trends | 50 | | | | | | | | | | | 02 | Co2 | Discuss the components of Electric Vehicles and Hybrid Electric Vehicles | 50 | |----|-----|--------------------------------------------------------------------------|----| | 03 | Co3 | Summarize the properties of batteries and electric vehicle drive systems | 50 | | 04 | Co4 | Explain different charging methods of Electric vehicles | 50 | Signature of the course Instructor This course has been duly verified Approved by the D.A.C. Signature of the Chairperson D.A.C. Course Completion Remarks & Self-Assessment.[This has to be filled after the completion of the course] [Please mention about the course coverage details w.r.t. the schedule prepared and implemented. Any specific suggestions to incorporate in the course content. Any Innovative practices followed and its experience. Any specific suggestions from the students about the content, Delivery, Evaluation etc.] | Sl.no. | Activity | Scheduled | Actual | Remarks | |--------|----------------------------------------------|-----------------|--------------------|------------------------------------------------------------------------------------------------------------------------| | | As listed in the course Schedule | Completion Date | Completion<br>Date | | | 01 | Program Integration Over View of the course | 24-03-2022 | 24-03-2022 | As per the plan | | 02 | Module: 01 Content | 7-04-2022 | 8-4-2022 | Because of solving numerical it took one class extra. | | 03 | Module:2 Course<br>Integration & content | 05-05-2022 | 05-05-2022 | Got additional class because of adjustment of class from other faculty and could able to complete as per the schedule. | | 04 | Mid Term <b>Test</b> | 12-05-2022 | 14-05-2022 | There were no classes in the extended days | | 05 | Test Paper Discussion | 16-05-2022 | 16-05-2022 | Completed as per the schedule | | 06 | Module:03 Course Integration and content | 08-06-2022 | 08-06-2022 | Though planned for sessions and 1 Saturday came as working and spent 9 session to cover the topics | | 07 | Module:04 Course Integration and content | 20-06-2022 | 20-06-2022 | Completed as per the plan. | | 08 | Case Study | 02-06-2022 | 08-06-22 | As per the students request the date of submission extended. | |----|---------------------|------------|----------|--------------------------------------------------------------| | 09 | Program integration | 20/6/2022 | | As per the plan | Any specific suggestion/Observations on content/coverage/pedagogical methods used etc.: - 1. Few students were able to do the MATLAB programming for the characteristics, calculation of design parameters also. - 2. As it is offered for the first semester, some content may not be able to deliver at the higher pace or in depth, - 3. Content was covered with limited classes because of the semester working days were less. #### Course Outcome Attainment: | Sl.no | C.O. | Course | Target set for | Actual C.O. | Remarks on | |-------|------|---------------------------|----------------|-----------------|---------------------| | | No. | Outcomes | attainment in | Attainment | attainment | | | | | percentage | In Percentage | &Measures to | | | | | | III reiceiliage | enhance the | | | | | | | attainment | | 01 | Co1 | Describe the importance | 50 | 47.92% | Majority of the | | | | of Electric Vehicles in | | | students didn't | | | | recent trends | | | understand the | | | | | | | questions and | | | | | | | wrote different | | | | | | | answers. This | | | | | | | subject is at first | | | | | | | year level became | | | | | | | difficult for them. | | 02 | Co2 | Discuss the components | 50 | 52.43% | As per the | | | | of Electric Vehicles and | | | expectation. | | | | Hybrid Electric Vehicles | | | | | 03 | Co3 | Summarize the properties | 50 | 58.91% | May be expected | | | | of batteries and electric | | | less and can keep | | | | vehicle drive systems | | | little higher side. | | 04 | Co4 | Explain different | 50 | 59.84% | May be expected | | | | charging methods of | | | less and can keep | | | | Electric vehicles | | | little higher side. | Signature of the course Instructor This course has been duly verified Approved by the D.A.C. Make Signature of the Chairperson D.A.C. # SCHOOL of ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Year: 2022-2023 Semester: 4<sup>th</sup> Section: 4-EEE-1 02.06.2023 **Course Title:** Battery Management System Course Code: EEE3036 Type of Skill: Entrepreneurial Skills Type of Activity: Simulation and hardware based Learning **Instructor in Charge:** Mr. Sunil Kumar A V Instructor for Section: Mr. Sunil Kumar A V **Details about the activity:** Students were able to Simulate and develop a hardware model of Battery Management System in group wise to enhance the Entrepreneurial Skill. Students Learn the model of BMS and its problem analysis, Product development. **Topic of Activity:** Problem Analysis and product development of BMS using Matlab Simulation Model presented by Students. Details of the students involved in the activity: All the students of 4EEE-1. **Details of the students involved in the activity:** 4EEE1 Students | Sl. No | Student Id No. | Name of the Student | |--------|----------------|---------------------| | 1. | 20211EAE0027 | DUSHANTH B | | 2. | 20211EEE0001 | PENUGONDA CHARAN | | 3. | 20211EEE0002 | SHAIK AHAMMAD | | 4. | 20211EEE0003 | SUMAN | | 5. | 20211EEE0004 | YAMUNA M N | | 6. | 20211EEE0005 | HARIKRISHNA | | 7. | 20211EEE0006 | PIYUSH NISHAD | | 8. | 20211EEE0007 | GAGANMURTHY | | 9. | 20211EEE0008 | HRUTHIK H B | | 10. | 20211EEE0009 | ANUSHA B | | 11. | 20211EEE0010 | SUPRITH D L | | 12. | 20211EEE0011 | NITHISH U | | 13. | 20211EEE0012 | VIDYA SHREE G N | | 14. | 20211EEE0013 | R V GANESH | | 15. | 20211EEE0014 | SINCHANA M | | 16. | 20211EEE0015 | BINDHU R C | | 17. | 20211EEE0016 | GAGAN SAI A S | City Office: University House, 8/1, King Street, Richmond Town, Bengaluru - 560025 Campus: Presidency University, Itgalpur, Rajankunte, Bengaluru - 560064 Phone: + 80 4925 5533 / 5599 Email ID: info@presidencyuniversity.in www.presidencyuniversity.in # PRESIDENCY UNIVERSITY Private University Estd. in Karnataka State by Act No. 41 of 2013 | | | In Karnataka State by Act No. 41 of 2013 | |-----|--------------|------------------------------------------| | 18. | 20211EEE0017 | KAVYA N | | 19. | 20211EEE0018 | ROHAN R | | 20. | 20211EEE0019 | BHARATH H D | | 21. | 20211EEE0020 | RUDRAGOUDA K POLICE PATIL | | 22. | 20211EEE0021 | HARSHITHA B S | | 23. | 20211EEE0023 | MASROOR AHMED | | 24. | 20211EEE0024 | ANIRUDH S | | 25. | 20211EEE0025 | RATHISH HOMBALE N | | 26. | 20211EEE0026 | MOHAMMED AIMAN KHAN | | 27. | 20211EEE0027 | YASHWANTH KUMAR S | | 28. | 20211EEE0028 | ADARSH A | | 29. | 20211EEE0029 | CHETHAN S KATTI | | 30. | 20211EEE0030 | JATIN SHARMA | | 31. | 20211EEE0031 | TEJASHWINI ANNAPPAGOUDA PATIL | | 32. | 20211EEE0032 | MANTHU NANDHINI | | 33. | 20211EEE0033 | MOHAMMAD NABEEL ABBAS | | 34. | 20211EEE0034 | RAJANEESH B S | | 35. | 20211EEE0035 | V RAHUL BALAJIGA | | 36. | 20211EEE0036 | DEEPAK DANIEL F | | 37. | 20211EEE0037 | KHALEEL H TELSUNG | | 38. | 20211EEE0038 | HEMANT PANDIT | | 39. | 20211EEE0039 | AKASH K | | 40. | 20211EEE0040 | MOHAMED THABISH. | | 41. | 20211EEE0041 | NAYANI POORNACHANDAN ROYAL | | 42. | 20211EEE0042 | ABHISHEK BASAVARAJ HAMPANNAVAR | | 43. | 20211EEE0043 | RISHIKA R | | 44. | 20211EEE0044 | MOHAMMED ABRAR. | | 45. | 20211EEE0046 | BASIL BINU | | 46. | 20211EEE0047 | G KIRAN KUMAR | | 47. | 20211EEE0048 | SAGAR D M | | 48. | 20211EEE0050 | YASWANTH BUDURI | | 49. | 20211EEE0051 | MADIVADA HEMANTH | | 50. | 20211EEE0052 | YENNABOINA RAHUL | | 51. | 20211EEE0053 | KARRI GOWRI ESWAR | | 52. | 20211EEE0055 | SETTIPALLI SAINATH | | 53. | 20211EEE0056 | SHREYAS E | | 54. | 20211EPE0002 | SIRICHAPALA UDAY MALIK | | 55. | 20221LEE0001 | NANDYALA SIVA MANOJ REDDY | | 56. | 20221LEE0002 | CHINTHA MANJUNATH | | 57. | 20221LEE0003 | K TUNISH | | | | | City Office: University House, 8/1, King Street, Richmond Town, Bengaluru - 560025 **Campus**: Presidency University, Itgalpur, Rajankunte, Bengaluru - 560064 **Phone**: + 80 4925 5533 / 5599 **Email ID**: <a href="mailto:info@presidencyuniversity.in">info@presidencyuniversity.in</a> www.presidencyuniversity.in # PRESIDENCY UNIVERSITY Private University Estd. in Karnataka State by Act No. 41 of 2013 | 58. | 20221LEE0004 | KUPPAM MANJUNATHA | |-----|--------------|-------------------| | 59. | 20221LEE0005 | RITHIKA RAJ | | 60. | 20221LEE0006 | BHUVAN B U | | 61. | 20221LEE0007 | RAGHU M | Sample Presentation as mentioned in the topic. **COURSE NAME :** BATTERY MANAGEMENT SYSTEM **COURSE CODE**: EEE3036 # REPORT BASED ON MATLAB SIMULATION OF IOT BASED BATTERY MANAFEMENT SYSTEM PERFORMED BY THE TEAM City Office: University House, 8/1, King Street, Richmond Town, Bengaluru - 560025 **Campus**: Presidency University, Itgalpur, Rajankunte, Bengaluru - 560064 **Phone**: + 80 4925 5533 / 5599 **Email ID**: <a href="mailto:info@presidencyuniversity.in">info@presidencyuniversity.in</a> www.presidencyuniversity.in anne <u>Abstract</u> This report presents a Matlab simulation of an IoT-based battery management system for the effective monitoring and maintenance of batteries in IoT devices. The objective of this study is to develop and evaluate a battery management system that leverages the power of IoT technology to optimize battery performance, extend battery life, and improve overall device reliability. The simulation methodology involves the design and implementation of a system architecture comprising sensors, microcontrollers, and communication modules for data acquisition and transmission. A battery model based on an equivalent circuit model is used to simulate battery behavior. Communication protocols and data pre-processing techniques are employed to facilitate efficient data collection and analysis. The simulation results demonstrate the effectiveness of the proposed IoT-based battery management system. The system accurately estimates battery parameters such as state of charge and state of health, enabling real-time monitoring of battery performance. Moreover, prediction models for estimating the remaining useful life of batteries provide valuable insights into battery degradation and facilitate proactive maintenance strategies. Comparative analysis with existing battery management techniques reveals the superior performance of the IoT-based system in terms of battery monitoring accuracy, efficiency, and reliability. The simulation study highlights the potential benefits of IoT technology in revolutionizing battery management practices and enhancing the overall performance and lifespan of batteries in IoT devices. The findings of this study contribute to the growing body of knowledge in the field of IoT-based battery management systems and provide a foundation for future research and development in this area. The proposed system has the potential to address the challenges associated with battery management in IoT applications and pave the way for more efficient and reliable IoT deployments. City Office: University House, 8/1, King Street, Richmond Town, Bengaluru - 560025 # PRESIDENCY UNIVERSITY Private University Estd. in Karnataka State by Act No. 41 of 2013 City Office: University House, 8/1, King Street, Richmond Town, Bengaluru - 560025 Campus: Presidency University, Itgalpur, Rajankunte, Bengaluru - 560064 Phone: +80 4925 5533 / 5599 Email ID: info@presidencyuniversity.in www.presidencyuniversity.in anne **Signature of Instructor:** 1 A **Signature of Instructor In-Charge:** **HOD - EEE**