

PRESIDENCY UNIVERSITY Presidency University Act, 2013 of the Karnataka Act No. 41 of 2013 | Established under Section 2(f) of UGC Act, 1956 Approved by AICTE, New Delhi

Itgalpur, Rajankunte, Yelahanka, Bengaluru – 560064

Course Code:	Course Title: Industrial Ch	nemistry							
CHE1002									
	Type of Course: Program	Core- Theory and Lab	L- P- C	2	1	3			
Version No.	2.0								
Course Pre-requisites	NIL								
Anti-requisites	NIL								
Course Description	The primary objective o	f the course is to int	roduce the c	once	pts	and			
	applications of chemistry	applications of chemistry in Engineering. The course also aims to enhance							
	the knowledge of cher	nical composition and	l properties	of	chem	nical			
	molecules as alternate f	uels. It will also cultiv	vate an abilit	y to	ider	ntify			
	chemistry in each piece of	smart engineered produ	icts used in ho	useh	olds	and			
	industry. It targets to stre	ngthen the fundamental	concepts of c	hem	istry	and			
	then builds an interface w	ith their industrial appli	cations.						
	The associated laborator	v provides an opportu	nity to lay fo	unda	ation	for			
	practical application of chemistry in engineering aspects								
		, , ,							
Course	The objective of the course is to familiarize the learners with the concepts								
Objective	of "Industrial Ch	emistry" and a	attain EM	PLOY	<mark>ABI</mark>	LITY			
	SKILL through EXPERIENT	IAL LEARNING techniqu	<mark>es.</mark>						
Course Outcomes	On successful completion	of this course the stude	nts shall be at	ole to):				
	1) identify the suitable	polymers to replace the	e conventional	mat	erial	S			
	2) Discuss the importa	nce of different inorg	anic material	s in	vari	ious			
	engineering fields								
	3) describe the processe	es involved in the oil refi	neries						
	4) apply the knowledge	e of electrochemistry p	rinciples for p	orote	ection	n of			
	different metals from								
Course Content:									
			Data						
Module 1	Polymers and	Case study	Collection	7	Class	205			
	Lubricants	Case study	and		Class	563			
Del anno del adde		Zalala Natia Dalama	analysis			. 0			
Polymers: Introduction,	Types of Polymerization,	Zeigier Natta Polymer	ization, Inerr	nopi		S &			
thermosetting polymers. F	reparation, properties, and	applications of the left	on, PVC, Nylo	n and	a Phé	enoi			
rormaldenyde; Elastomers	s: Natural rubber, Vulcaniz	zation of rubber, Synth	etic rubber a	na II	norga	anic			
rubbers, Polymer composi	les conto Functions of Jubricont	+ Machanism of lubricat	ion Fluid or U	vdra	duna	maia			
Lubricants: Types of Lubric	cants, Functions of Iubricani	t, Mechanism of Iubricat	ion, Fluid of H	yaro	uyna Eutra	imic			
ambient conditions and fo	r special applications. Brop	reme pressure iubricatio		TOP	Extre	eme			
Module 2	Materials	Assignment	Collection	6	Class	ses			
			101/						

Ceramics: Important clays and feldspar, ceramic, their types and manufacture. High technology ceramics and their applications

Cements: Classification of cement, ingredients and their role, Manufacture of cement and the setting process, quick setting cements.

Refractories: Definition, Classification with Examples; Criteria of a Good Refractory Material; Causes for the failure of a Refractory Material.

would 5		Assignment	analysis	UT Classes				
Module 3	Eucle and Combustion	Case study and	Case study and Data					

Topics: Fuels and Combustion

Fuels –Basics of hydrocarbon chemistry; Classification, Calorific value determination, Solid fuels: Proximate and Ultimate analysis of Coal; Liquid Fuels: Petroleum: Cracking, reforming, Knocking, Synthetic petrol, Power alcohol; Gaseous Fuels: Natural gas, CNG, LPG. Alternate fuels: Bio-diesel Combustion: flue gas analysis; Rocket propellants and Explosives – classification, storage and handling

Module 4	Corrosion	and	its	Case study		Data	05 Classes
	control					analysis	

Dry and Wet Corrosion – detrimental effects to buildings, machines, devices and decorative art forms, emphasizing Differential aeration, Pitting, Galvanic and Stress Corrosion cracking. Factors that enhance corrosion and choice of parameters to mitigate corrosion.

Corrosion Control – Cathodic protection- Sacrificial anodic protection, Advanced protective coatings : electro plating, electroless plating, PVD and CVD

List of laboratory tasks

1. Determination of total acid number of an oil (Comprehensive)

2. Determination of pKa of a weak acid using pH meter (Knowledge)

3. Potentiometric estimation of iron in the given rust solution using standard $K_2Cr_2O_7$ solution. (Comprehensive)

4. Determination of calorific value of a solid fuel using Bomb calorimeter (Comprehensive)

5. Synthesis of polyaniline and its conductivity measurement (Comprehensive)

6. Estimation of copper from industrial effluents by colorimetric method and smart phone digital imaging method (material analysis) (Knowledge)

7. Determination of Viscosity of different natural /synthetic polymers Using Ostwald Viscometer (Knowledge)

8. Determination of Critical Micelle Concentration (Comprehensive)

9. Electroplating technique (Knowledge)

10. Estimation of water hardness by EDTA method and its removal (by zeolite/ ion exchange method) (Comprehensive)

11. Estimation of water quality monitoring using conductivity method(Comprehensive)

Preparation of a working model relevant to syllabus and its demonstration

1. Preparation of gas sensing polymeric material for sensing (student can fabricate a chemical sensor and demonstrate) (Application)

2. Student can select any mitigation method (preferably coating methods) to control corrosion (Application)

Targeted Application & Tools that can be used:

Application areas are Polymer, oil and gas, Boiler, automotive and mechanical industries

Tools: Statistical analysis of Corrosion in materials using tools like Design expert software (ANOVA, RSM, etc.)

Project work/Assignment:

Assessment Type

- Midterm exam
- Lab experiments conduction
- Assignment (review of digital/ e-resource from PU link given in references section mandatory to submit screen shot accessing digital resource.) anne
- Quiz

- End Term Exam
- Self-Learning

Assignment: 1 Report writing on recycling plastic waste into plastic lumber

Assignment 2: Identify a corrosion problem encountered in your immediate surroundings and discuss your choice of mitigation

Text Book

1. Engineering Chemistry, Shika Agrawal (2018), Cambridge University Press

Reference Books

1. Engineering Chemistry, Jain and Jain (18th Edition) Dhanpat Rai Publishing Company

E resources

- 2. https://www.mdpi.com/books/pdfview/book/1069
- 3. <u>https://www.mdpi.com/books/pdfview/book/333</u>
- 4. https://www.bloomsburycollections.com/book/fuel-an-ecocritical-history/
- 5. https://eng.oversea.cnki.net/kns55

Topics related to Skill development

- **1.** Lubricants for Extreme ambient conditions and for special applications
- 2. Applications of Engineering Materials
- Dry and Wet Corrosion detrimental effects to buildings, machines, devices and decorative art forms

Topics related to Energy and Sustainability

- 1. Applications of Thermoplastics & thermosetting polymers
- 2. Polymer composites
- 3. Petroleum: Cracking, reforming, Knocking, Synthetic petrol, Power alcohol
- 4. Factors that enhance corrosion and choice of parameters to mitigate corrosion.

Topics relevant to Employability Skill Development:

Corrosion control and lab experiments for Developing Employability Skills through Experiential Learning Techniques. This is attained through assessment components mentioned in course handout

Topics relevant to Environment and Sustainability: All topics in theory and lab component are relevant to Environment and Sustainability.

Lab Skill sets

- 1. An attitude of enquiry.
- 2. Ability to interpret events and results.
- 3. Ability to work as a leader and as a member of a team.
- 4. Observe and measure physical phenomena.
- 5. Write reports.
- 6. Select suitable equipment, instrument and materials.
- 7. The ability to follow standard test procedures.
- 8. An awareness of the Professional Ethics.
- 9. Need to observe safety precautions.

catalogue prepared by	
Recommended by the	PU/SOE/CHE/BOS-07/2022-23
Board of Studies on	7 th BOS held on 25/07/22
Date of Approval by the	18 th Academic council, PU/AC-18/MEC/2019-2023/2021
Academic Council	03 rd August, 2022

(Established under the Presidency University Act, 2013 of the Karnataka Act 41 of 2013)

A-8[2021] COURSE HAND OUT [Integrated Course]

SCHOOL: School of Engineering DEPT.: Chemistry DATE OF ISSUE: 23.03.2022

NAME OF THE PROGRAM: B. Tech

P.R.C. APPROVAL REF.: PU/AC-17/EEE/2021

SEMESTER/YEAR: 2nd Semester/I year

COURSE TITLE & CODE: Industrial Chemistry, CHE1002

COURSE CREDIT STRUCTURE: 2-2-3

CONTACT HOURS: 30 (theory) 15 (Practical)

COURSE IN-CHARGE: Dr. Dileep R

PROGRAM OUTCOMES:

Graduates of the B. Tech. Engineering Program will be able to:

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems (H).

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex Engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (H).

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations (M).

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (L).

PO7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (M).

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (H).

PO11: Project management and finance: Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

COURSE PREREQUISITES: Nil

COURSE DESCRIPTION: The primary objective of the course is to introduce the concepts and applications of chemistry in Engineering. The course also aims to enhance the knowledge of chemical composition and properties of chemical molecules as alternate fuels. It will also cultivate an ability to identify chemistry in each piece of smart engineered products used in households and industry. It targets to strengthen the fundamental concepts of chemistry and then builds an interface with their industrial applications.

The associated laboratory provides an opportunity to lay foundation for practical application of chemistry in engineering aspects

This course caters to Environment and Sustainability.

COURSE OBJECTIVE: The objective of the course is to familiarize the learners with the concepts of "Industrial Chemistry" and attain EMPLOYABILITY SKILL through EXPERIENTIAL LEARNING techniques.

COURSE OUTCOMES: On successful completion of this course the students shall be able to:

> CO1: identify the suitable polymers to replace the conventional materials

- > CO2: Discuss the importance of different surfactants in various fields
- > CO3: describe the processes involved in the oil refineries
- CO4: apply the knowledge of electrochemistry principles for protection of different metals from corrosion.

MAPPING OF C.O. WITH P.O.

[H-HIGH, M- MODERATE, L-LOW]

PO CO	1	2	3	4	5	6	7	8	9	10	11	12
1	М			М		L				L		
2	М			Н		М	L			L		
3	М			Н			М			L		
4	М	Н		М		М				L		

COURSE CONTENT (SYLLABUS):

Module:1: Polymer Chemistry [7 Hrs] [Blooms 'level selected: Knowledge]

Polymers: Introduction, Zeigler Natta Polymerization, Polymerization techniques, Plastics as engineering materials: Thermo plastics and thermosetting plastics-advantages, limitations and industrial applications. Compounding and moulding process (injection and Compression molding) Polymer composites, Conducting polymers and biodegradable polymers

Module: 2: Introduction to Surfactants and Lubricants [4 Hrs] [Blooms 'level selected: Knowledge]

Surfactant Chemistry: Basic terminology: Surfactants, classification, micelle formation, emulsifying agents, foaming agents, wetting agents (basics), and Industrial application of surface active agents. Lubricants: classification and mechanism of lubrication

Module: 3: Fuels and Combustion [7 Hrs] [Blooms 'level selected: Comprehension]

Fuels –Classification, Calorific value determination, Solid fuels: Proximate and Ultimate analysis of Coal; Liquid Fuels: Petroleum: Basics of Catalysis, types and importance in Cracking and reforming; Knocking, Synthetic petrol, Power alcohol; Gaseous Fuels: Natural gas, CNG, LPG. Alternate fuels: Bio-diesel. **Combustion:** flue gas analysis; Rocket propellants and Explosives – classification, storage and handling

Module: 4: Corrosion and its control [7 Hrs] [Blooms 'level selected: Comprehension]

Dry and Wet Corrosion – detrimental effects to buildings, machines, devices and decorative art forms, emphasizing Differential aeration, Pitting, Galvanic and Stress Corrosion cracking. Factors that enhance corrosion and choice of parameters to mitigate corrosion. **Corrosion Control** –

Cathodic protection- Sacrificial anodic protection, advanced protective coatings: electro plating, electroless plating, PVD and CVD

SKILL SETS TO BE DEVLOPED: [Select the appropriate skill/skills and make them bold]

- 1. An attitude of enquiry.
- 2. Confidence and ability to tackle new problems.
- 3. Ability to interpret events and results.
- 4. Ability to work as a leader and as a member of a team.
- 5. Assess errors in systems/processes/programs/computations and eliminate them.
- 6. Observe and measure physical phenomena.
- 7. Write reports.
- 8. Select suitable equipment, instrument, materials & software
- 9. Locate faults in system/Processes/software.
- 10. Manipulative skills for setting and handling systems/Process/ Issues
- **11**. The ability to follow standard /Legal procedures.
- 12. An awareness of the Professional Ethics.
- **13.** Need to observe safety/General precautions.
- 14. To judge magnitudes/Results/issues without actual measurement/actual contacts

COURSE CONTENT & TASK SCHEDULE FOR LABORATORY COMPONENT:

SI. No.	Session Number and Date	Task No	Task	Level 01	Level 2	Number of Lab Sessions required to complete the task	Skills to be developed	Course Outcome to be developed
01	1	1	Determination of total acid number of an oil	Yes		1	1, 6, 11	

			Determination					
			of pKa of a					
02	2	2	weak acid	Yes		1	1, 6, 8, 11	
			using pH					
			meter Detentionentrie					
			Potentiometric					
			iron in the					
			given rust					
03	3	3	solution using		Yes	1	1, 6, 8, 11	
			standard					
			K ₂ Cr ₂ O ₇					
			solution					
			Determination					
	4		of calorific					
04		Л	value of a solid		Yes	1	16811	
04		4	fuel using				1, 0, 0, 11	
			Bomb					
			calorimeter					
	5		Estimation of					
			copper from					
05		5	offluonts by		Yes	1	1, 6, 8, 11	
			colorimetric					
			method					
			Determination		Yes		1, 6, 8, 11	
			of Viscosity of					
			different					
06	6	6	natural			1		
00	U	0	/synthetic			-		
			polymers					
			Using Ostwald					
			Viscometer					
			Determination					
07	7	7	Of Critical Micollo		Yes	1	1, 6, 8, 11	
			Concontration					
			Estimation of					
			water					
			hardness by					
			EDTA method					
08	8	8	and its		Yes	1	1, 6, 8, 11	
			removal (by					
			zeolite/ ion					
			exchange					
			method)					

09	9	9	Electroplating technique	Yes	1	1, 6, 8, 11	
10	10	10	Synthesis of polyaniline and its conductivity measurement	Yes	1	1, 6, 8, 11	

DELIVERY PROCEDURE (PEDAGOGY):

Theory

- a. Procedure Adopted: As Industrial Chemistry is an integrated course where the concepts other than that mentioned above, are explained through lectures and power point presentations. Review classes are conducted periodically so that students are able to apply the concepts taught in the previous classes.
- b. Self-learning topics: Bulk and Suspension polymerization,
- c. Experimental Learning: Corrosion through lab activities
- d. Topics for Participative learning: Fuels, types of corrosion and control through group discussion and seminar.
- e. Topics for Technology Enabled Learning: NIL
- f. Topics for problem based learning: Types of corrosion
 All other topics will be delivered through lecture with necessary visual aids

Lab

- g. Procedure adopted: This is a lab-based course where the concepts other than that mentioned above, are explained through practical demonstration. Viva-voce will be conducted and the results of every experiments will be discussed with students, so that students are able to apply their theoretical knowledge for performing the practical experiments.
- h. Participative learning: Performing all the ten experiments in the laboratory.
- i. Experimental learning: Estimation of hardness, amount of copper in industrial effluents, estimation of iron in rust determination of pH, pKa and conductivity of the acids, and viscosity of the liquids.

REFERENCE MATERIALS:

Text Book

1. Engineering Chemistry, Shika Agrawal (2018), Cambridge University Press

Reference Books

- 1. Engineering Chemistry, Jain and Jain (18th Edition) Dhanpat Rai Publishing Company
- 2. An introduction to Surfactants (2014) Tharwat F. Tadros, De Gruyter Publishers

Course material:

- 1. Power point presentations/notes of modules 1-4 will be shared in Microsoft teams
- 2. Lab manual for each experiment and a Power point presentation will be shared in Microsoft teams

Web link

E-resources

- 1. <u>https://nptel.ac.in/courses/104/105/104105039/</u>
- 2. <u>https://nptel.ac.in/content/storage2/courses/103104045/pdf_version/lecture21.pdf</u>
- 3. <u>https://nptel.ac.in/courses/103/105/103105110/</u>
- 4. <u>https://nptel.ac.in/courses/113/104/113104082/</u>

Video Links

- 1. <u>https://youtu.be/0dcQcNARKOI</u>
- 2. <u>https://youtu.be/xzFCexGwVmU</u>

GUIDELINES TO STUDENTS:

- > Attend classes regularly and do not miss any topics.
- > Maintain running notes of each and every class.
- > Never hesitate to ask doubts.
- > Revise the previous classes before attending the next class.
- Understand the chemical reactions and try to write equations for the same on your own.
- > Learn how to draw the diagrams which helps to memories the topics easily.

COURSE SCHEDULE FOR THEORY COMPONENT: (This is a macro level planning. Mention the unit wise expected starting and ending dates along with the tests/assignments/quiz and any other activities) [allot about 75% for delivery, about 10 to 12% for Evaluation Discussion, about 10 to 15% on integrating the learning Modules within the course and to the program]

SI. No.	Activity	Starting Date	Concluding Date	Total Number of Periods
01	Over View of the course	23.03.2022	23.03.2022	1

REGISTRAR

02	Module : 01	24.03.2022	13.04.2022	7
02	Module: 02	15.04.2022	30.04.2022	4
03	Assignment	1.04.2022	20.04.2022	
04	Mid Term Exam	09.05.2022	12.05.2022	
05	Module:03	01.05.2022	20.05.2022	7
06	Module:04	21.05.2022	15.06.2022	7
07	Revision Sessions	16.06.2022	23.06.2022	4

COURSE SCHEDULE FOR LABORATORY COMPONENT:

SI. No.	Activity	Starting Date	Concluding Date	Total Number of Periods
01	Over View of the course	23.03.2022	23.03.2022	1
02	Laboratory Familiarization	23.03.2022	23.03.2022	1
02	Conduct of first set of experiments	24.03. 2021	30.04.2022	5
03	Assignment/ Test or any other activity/Guest Lecture/ Field Visit			1
04	Conduct of second set of experiments	01.05.2022	05.06.2022	5
05	Summary of the Laboratory tasks	06.06.2022	06.06.2022	1
06	End Term Evaluation			1

SCHEDULE OF INSTRUCTION FOR THE THEORY COMPONENT

SI. n o	Session no [date if possible]	Lesson Title	Topics	CO No.	Delivery Mode &Tools used	Referenc e
1	1	Introduction	Course integration			
2	2	Polymers: Introduction,	Zeigler Natta Polymerization	1	Participative learning	T1
3	3	Polymerization techniques	Bulk, Suspension, Emulsion and solution polymerization	1	Black board teaching and PPT	T1

anne REGISTRAR Registra

4	4	Plastics as engineering materials	Thermo plastics and thermosetting	1	Black board teaching	T1		
					and PPT			
5	5	Plastics as engineering materials	plastics- advantages, limitations and industrial applications.	is- advantages, 1 Bl ions and industrial te ations. ar				
6	6	Compounding and moulding process	injection and Compression molding	1	Black board teaching and PPT	T1		
7	7	Advanced polymers	Polymer composites, Conducting polymers and biodegradable polymers	1	Black board teaching and PPT	T1		
8	8	Applications of the concepts learnt in previous classes	Review of previous classes and discussion on outcome of previous classes	1	Participative learning	T1		
	Module 1 concluded							
9	9	Surfactant Chemistry	Basic terminology: Surfactants, classification,	2	Participative learning	T1		
1 0	10	micelle formation	micelle formation, emulsifying agents, foaming agents, wetting agents (basics),	2	Black board teaching and PPT	T1		
1 1	11	Applications of surfactants	Industrial application of surface active agents	2	Black board teaching and PPT	T1		
1 2	12	Lubricants:	classification and mechanism of lubrication	2	Black board teaching and PPT	T1		
1 3	13	Applications of the concepts learnt in previous classes	Review of previous classes and discussion on outcome of previous classes	2	Participative learning	T1		
	Module 2 concluded							

REGISTRAR

1 4	14	Chemical energy sources	Fuels-Classification,Calorificvaluedetermination	3	Participative learning	T1
1 5	15	Solid Fuels	Proximate and Ultimate analysis of Coal	3	Black board teaching and PPT	T1
1 6	16	Liquid Fuels	Petroleum: Basics of Catalysis, types and importance in Cracking and reforming	3	Black board teaching and PPT	T1
1 7	17	Liquid Fuels	Knocking, Synthetic petrol, Power alcohol	3	Black board teaching and PPT	Τ1
1 8	18	Gaseous Fuels	Natural gas, CNG, LPG. Alternate fuels: Bio- diesel	3	Black board teaching and PPT	T1
1 9	19	Combustion	flue gas analysis; Rocket propellants	3	Black board teaching and PPT	T1
2 0	20	Explosives	classification, storage and handling	3	Black board teaching and PPT	T1
2 1	21	Applications of the concepts learnt in previous classes	Review of previous classes and discussion on outcome of previous classes	3	Participative learning	T1
		-	Module 3 concluded		-	
2 2	22	Corrosion types	Dry and Wet Corrosion –	4	Black board teaching and PPT	T1
2 3	23	Effects of Corrosion	detrimental effects to buildings, machines, devices and decorative art forms,	4	Black board teaching and PPT	T1
2 4	24	Types of wet corrosion	emphasizing Differential aeration, Pitting, Galvanic	4	Black board teaching and PPT	T1

			and Stress Corrosion cracking.					
2 5	25	Factors affecting Corrosion	Factors that enhance corrosion and choice of parameters to mitigate corrosion.	4	Black board teaching and PPT	T1		
2 6	26	Corrosion Control	Cathodic protection- Sacrificial anodic protection,:	4	Black board teaching and PPT	T1		
2 7	27	Advanced protective coatings	electro plating, electroless plating	4	Black board teaching and PPT	T1		
2 8	28	Advanced protective coatings	PVD and CVD	4	Black board teaching and PPT	T1		
2 9	29	Applications of the concepts learnt in previous classes	Review of previous classes and discussion on outcome of previous classes	4	Participative learning	T1		
	Module 4 concluded							
3 0	30		Review of previous classes and discussion on outcome of previous classes		Participative learning	T1		

SCHEDULE OF INSTRUCTION FOR THE LAB COMPONENT (any 6 experiments)

SI.	Session		Referenc
n	no	Experiment	0
ο	[date if possible]		υ
1	1	Lab Introduction	
2	2	Determination of Viscosity of	Lab
		different natural /synthetic polymers	manual
		Using Ostwald Viscometer	
3	3	Determination of pKa of a weak acid	Lab
		using pH meter	manual

Λ	1	Potentiometric estimation of iron in	Lab
4	4		Lau
		the given rust solution using standard	manual
		K ₂ Cr ₂ O ₇ solution	
5	5	Estimation of copper from industrial	Lab
		effluents by colorimetric method	manual
6	6	Estimation of strength of mixture of	Lab
		acids by conductometric titration	manual
7	7	Determination of total acid number of	Lab
		an oil	manual
8	8	Determination of calorific value of a	Lab
		solid fuel using Bomb calorimeter	manual
9	9	Determination of Critical Micelle	Lab
		Concentration	manual
1	10	Review of previous classes and	Lab
0		discussion on outcome of previous	manual
		(103363	

ASSESSMENT SCHEDULE FOR THEORY COMPONENT: (Here mention the details of all the formal and informal evaluation methods. Formal evaluation refers to Test 1, Test 2 and the End Term Final Examination. All other evaluation components come under informal evaluation.)

[Some of the samples are: Test 1, Test 2, Term End Exam, Surprise Test, Open Book test, Pre Course and Post course Test, Unit/Module wise Tests Quiz,

COURSE CLEARANCE CRITERIA:

Minimum attendance requirement: 75%

A student with shortage of attendance (i.e., less than 75% of the classes actually conducted in the course under Clauses 7.3 to 7.5), shall not be permitted to appear in the End Term Final Examinations of the Course irrespective of the student's academic performance in the other components of Continuous Assessments. The student shall be given a placeholder grade "NP" (Not Permitted) (refer Section 8.0), to indicate that the student has not been permitted to appear for the End Term Final Examinations due to shortage of attendance during the Academic Term in the concerned Course.

Further, a student who has shortage of attendance (received placeholder grade "NP") in ONLY ONE (O1) Course in the concerned Semester, shall be eligible to re-register for the concerned Course in the following Summer Term, subject to all the conditions stated in Clauses 15.4 and 15.5. The student is cautioned that this may result in the loss of an Academic Year for the student.

Assessment: Minimum performance criteria

[1] Continuous assessment:

Components: Test 2, Test 2, Assignment, Quiz and Surprise test

A student must obtain a minimum of 40% of the total marks/weightage assigned for Continuous Assessments (other than the End Term Final Examination) in the Course.

A student failing to get the minimum requirement of 40% of the total marks/weightage assigned for components of Continuous Assessments (other than the End Term Final Examination), shall not be eligible to appear in the End Term Final Examination of the Course. The student shall be given the grade "NE" (Not Eligible) as a placeholder grade in the Course.

A student who has received "NE" grade in a Course or Courses, due to failure to obtain a minimum of 40% of the total marks/weightage assigned for Continuous Assessments (other than the End Term Final Examination), in the concerned Course(s), shall have to repeat the concerned Course(s) by re-registering for the Course(s) whenever the concerned Course(s) is (are) offered by the respective Department/School. Further, the student is cautioned that she/he shall have to register for the Course(s) in which she/he has received the placeholder grade "NE" (as per Clause 8.6) only in the concerned Semester of the next Academic Year when the concerned Course(s) shall be offered, which may result in the loss of an Academic Year for the student.

[2] End Term Exam:

The student must obtain a minimum of 30% of the total marks/weightage assigned for End Term Final Examination in the Course.

A student failing to get the minimum requirement of 30% of the total marks/weightage assigned for the End Term Final Examination shall be declared as "Failed" and given "F" Grade in the concerned Course, regardless of the marks obtained in the other components of Continuous Assessments in the concerned

The student shall have to re-appear in the "Make-Up Examinations" (refer Clause 14.3) as scheduled by the University, or, re-appear in the End Term Final Examination of the same Course when it is scheduled at the end of the following Semester or Summer Term, if offered. The marks obtained in the Continuous Assessments (other than the End Term Final Examination) shall be carried forward and be included in computing the final grade, if the student secures the minimum requirements (as per Sub-Clauses 8.5.2 and 8.5.3) in the "Make-Up Examinations" of the concerned Course.

The Student must have secured a minimum of 40% of the AGGREGATE of the marks/weightage of the components of the Continuous Assessments and the End Term Final Examination in the concerned Course.

Topics relevant to Employability Skill Development:

Corrosion control and lab experiments for <mark>Developing Employability Skills</mark> through <mark>Experiential Learning Techniques</mark> This is attained through the following assignment components.

SI. No	Assessment type [Include here assessment method for self-learning component also]	Contents	Course outcome Number	Duration (In Hours)	Marks	Weighta ge	Venue, Date & Time
1	Mid term	Module 1 & 2	1, 2	1.5	50	25%	May 2022
2	Assignment	Module 1 & 2	1, 2	-	25	12.5%	May to June 2022
3	Assignment (Review of	All modules			5	2.5%	May to
	digital/ e-resource from	https://npt					June
	Presidency University	<u>el.ac.in/cou</u>					2022
	link given in references	rses/103/10					
	section (mandatory to	<u>5/10310511</u>					
	submit screen shot	<u>0/</u>					
	accessing digital						
	resource, otherwise it						
	will not be evaluated)						
4	Quiz	Module 3 &	3, 4	-	20	10%	May to
		4					June 2022
5	End Term	All	1-4	3	100	50%	June 2022

ASSESSMENT DETAILS FOR LABORATORY COMPONENT:

SI. No.	Assessment type [Include here assessment method for self- learning component also]	List of Tasks	Course outcome Number	Duration In Hours	marks	weightage	Venue, DATE &TIME
1	Lab Exercise	Session wise evaluation	1-4	2 hr each	40	20%	Lab

Assessment Matrix for Daily Task Evaluation for Laboratory component:

SI. No.	Task No.	Marks for activity 01 [Mention the activity]	Marks for activity 02 [Mention the activity]	Marks for activity 03 [Mention the activity]	Total Marks
1	Performance	4			
2	Participation		3		10 marks
3	Report			3	10 marks
	writing				

COURSE CLEARANCE & EVALUATION CRITERIA: (Here mention the minimum requirements of attendance, marks in continuous assessment & term end examination, make up exam policy and other details as per the academic regulations & PRC):

MAKEUP POLICY:

If the student misses an evaluation component, he/she may be granted a make-up. In case of an absence that is foreseen, make-up request should be personally made to the Instructor-in-Charge, well ahead of the scheduled evaluation component. Reasons for unanticipated absence that qualify a student to apply for make-up include medical emergencies or personal exigencies. In such an event, the student should contact the Instructor-in-Charge as soon as practically possible.

CONTACT TIMINGS IN THE CHAMBER FOR ANY DISCUSSIONS: (Here mention the fixed slots on any of the week days for students to come and interact with you)

SAMPLE THOUGHT PROVOKING QUESTIONS

- 1. Describe the technique of polymerization involved in the manufacture of polyacrylic acid
- 2. Give any five types of additives used in compounding of plastics with their respective functions
- 3. Describe the technique of polymerization involved in the manufacture of Styrenebutadiene rubber
- 4. Give any five reasons why the Fibre reinforced plastics have a very broad industrial applications
- 5. Explain the mechanism involved in the coordination polymerization for the formation of Polyethylene
- 6. Paraffin or new cotton cloth barely wetted by water, but when surfactant is added to water their surface easily becomes wet. Explain that property of a surfactant involved in the statement

- 7. Describe the conditions involved in depositing a superior metal over an inferior metal by means of electrolysis using chromic acid in sulphuric acid solution.
- 8. Explain the type of corrosion observed when a buried iron pipeline is connected to zinc bar. Provide two more similar examples and preventive measures
- 9. Explain the type of corrosion that occurs when two different parts of the same metal are exposed to different concentration of oxygen. Give two examples and preventive measures
- 10. Explain the procedure in manufacture of a secondary fuel derived from coal

Sample Assignment questions

- A 0.5g of which when burnt in a bomb calorimeter raised the temperature of water from 293K to 296. 4K. The mass of water is 1000 g and water equivalent of calorimeter is 350 g. The specific heat of water is 4.187 kJ/kg/K, latent heat of steam is 2454 kJkg-1. The coal sample contains 93% carbon, 5% hydrogen and 2% ash. What parameters can be calculated from the given data. Calculate the same.
- 2. 0.7 g of chemical fuel containing 6% hydrogen, when burnt in a bomb calorimeter raises the temperature of water from 291 K to 295.2 K. The mass of water is 1.3 kg and water equivalent of calorimeter is 350 g. The specific heat of water is 1 kcal/kg/°C, latent heat of steam is 538.5 cal/g. Mention the parameters that can be found and calculate the same
- 3. Polymers are different than low-molecular weight oligomers. For example an oligomeric polyethylene is wax, oligomeric polystyrene is similar to naphthalene (moth balls), oligomeric rubber is oil or grease. One way to quantify the difference between an oligomer and a polymer is through rheology. a) Give Newton's law for viscosity. b) Define the shear stress. c) Define the rate of strain. d) Define the velocity gradient. e) The tensile (or extensional) viscosity is used to describe the ability of a fluid to form a fiber. Explain how the tensile (or extensional) viscosity is defined. f) Sketch the behavior of viscosity as a function of velocity gradient showing how the zero-shear-rate viscosity or Newtonian-plateau viscosity are obtained. g) Sketch the dependence of the zero-shear-rate viscosity on molecular weight. h) How can your plot of part "b" be used to define a polymer
- a) What are the three main stages of chain growth polymerization? b) Write an expression for the rate of propagation for chain growth polymerization in terms of the monomer concentration and the initiator concentration. c) Obtain an exponential expression for the monomer concentration from part c and show that this is linear for early stages of the reaction. d) Obtain an expression for the kinetic chain length for chain growth polymerization in terms of the monomer concentration.

Sample Thought Provoking Questions to be asked to assess the Students' Preparedness to carry out the Task [For Laboratory Component]:

(Here type sample typical questions for students 'reference)

SL. NO	QUESTIONS				
1	1. Alkalinity is the capacity to neutralize				
1	a) base	c) salt			
		\cap			

	h) acid d) pope				
	2 The type of Chemical reaction involved in conductometric titrativ	on is			
	a) Neutralization reaction	ation			
	reaction				
	h) Complexemetric reaction d) Precipitation r	oaction			
	2 In the case of evidation reduction titration of EAS using of	tandard			
	dichromate solution a standard calomel electrode (SCE) is used	anuaru			
	a) reference electrode	as the,			
	a) reference electrode c) counter electro	f all the			
	above	i all the			
	4. According to Henderson- Hasselbalch equation, at half equivaler	nce			
	point,				
	a) PH= 0 c) pH=pka				
	b) pka =0 d) pH>pka				
	5. In acidic medium MnO ₄ ⁻ is reduced to				
	a) Mn ²⁺ c) Mn ⁵⁺				
	b) Mn ⁷⁺ d) Mn ⁴⁻				
	6. Alkalinity is due to the presence of				
	a) hydroxyl, carbonate, and bicarbonate ions in water				
	b) chloride, fluoride, and bromide ions in water				
	c) sulphate, phosphate, and nitrate ions in water				
	d) all				
	7. Name the complex obtained when ammonia is treated with copp	ber			
	a) supramonium complex				
	b) Coppor sulphate				
	8 The quantity measured in conductometric titration is				
	a) Potential b) Conductance c) Resistance d) Absorba				
	9 The type of reaction involved in nermanganometric titration is	ice			
	a) Redox				
	b) Neutralization d) Decomposition				
	10 Salt responsible for temporary bardness				
	a) Calcium Chloride, h) Magnesium Sulphate				
	b) c) Calcium Bicarbonate d) All the above				
2	How will you find the hardness of water by simple test at home?				
3	What is the role of EDTA in cement sample analysis?				
4	The Molecular wt of KMnO ₄ is 158g whereas the equivalent weight is account for the difference?	5 31.6 g			

5	Three acids found in foods are lactic acid (in milk products), oxalic acid (in rhubarb, beets), and malic acid (in apples). The pKa values are 3.88, 1.23, and 3.40 respectively. Identify which food product is most acidic in nature?
6	Why glass electrode is called an ion selective electrode?
7	During the redox titration, H ₂ SO ₄ is added to titrate why?
8	What is colorimetry? And what is the difference between colorimetry and turbidimetry?
9	Without any indicator, how the end point is detected using Conductometric titration method for estimation of strength of acids?
10	Two glass cups are taken and filled with (a) Petrol and (b) honey respectively. A small glass rod is kept on both the glass cups to stir by applying some force. In which liquid greater force is required to stir?

Target set for course Outcome attainment:

Sl.no	C.O. No.	Course Outcomes	Target set for attainment in percentage
01	CO1	To relate the knowledge learnt for various industrial Applications of polymers.	35
02	CO2	To Discuss the importance of different surfactants in various fields	45
03	CO3	To describe the processes involved in the oil refineries	45
04	CO4	To apply the knowledge of electrochemistry principles for protection of different metals from corrosion.	50

all

Signature of the Course Instructor

(Dr.Dileep R)

This course has been duly verified Approved by the D.A.C: 3rd DAC meeting held on 15th March 2022

tadefet.

Signature of the Chairperson D.A.C.

(Dr.Shahsikala A R)

Course Completion Remarks & Self-Assessment.[*This has to be filled after the completion of the course*]

[Please mention about the course coverage details w.r.t. the schedule prepared and implemented. Any specific suggestions to incorporate in the course content. Any Innovative practices followed and its experience. Any specific suggestions from the students about the content, Delivery, Evaluation etc.]

SI. No.	Activity As listed in the course Schedule	Scheduled Completion Date	Actual Completion Date	Remarks

Any specific suggestion/Observations on content/coverage/pedagogical methods used etc.:

Course Outcome Attainment:

SI. No.	C.O. No.	Course Outcomes	Target set for attainment in percentage	Actual C.O. Attainment In Percentage	Remarks on attainment & Measures to enhance the attainment
01	CO1				
02	CO2				
03					
04					

D.A.C. observation and approval:

BLOOM'S TAXONOMY

Learning Outcomes Verbs at Each Bloom Taxonomy Level to be used for writing the course Outcomes.

Cognitive Level	Illustrative Verbs	Definitions
Knowledge	arrange, define, describe, duplicate, identify, label, list, match, memorize, name, order, outline, recognize, relate, recall, repeat, reproduce, select, state	remembering previously learned information
Comprehension	classify, convert, defend, discuss, distinguish, estimate, explain, express, extend, generalize, give example(s), identify, indicate, infer, locate, paraphrase, predict, recognize, rewrite, report, restate, review, select, summarize, translate	grasping the meaning of information
Application	apply, change, choose, compute, demonstrate, discover, dramatize, employ, illustrate, interpret, manipulate, modify, operate, practice, predict, prepare, produce, relate schedule, show, sketch, solve, use write	applying knowledge to actual situations
Analysis	analyze, appraise, breakdown, calculate, categorize, classify, compare, contrast, criticize, derive, diagram, differentiate, discriminate, distinguish, examine, experiment, identify, illustrate, infer, interpret, model, outline, point out, question, relate, select, separate, subdivide, test	breaking down objects or ideas into simpler parts and seeing how the parts relate and are organized
Synthesis	arrange, assemble, categorize, collect, combine, comply, compose, construct, create, design, develop, devise, explain, formulate, generate, plan, prepare, propose, rearrange, reconstruct, relate, reorganize, revise, rewrite, set up, summarize, synthesize, tell, write	rearranging component ideas into a new whole
Evaluation	appraise, argue, assess, attach, choose, compare, conclude, contrast, defend, describe, discriminate, estimate, evaluate, explain, judge, justify, interpret, relate, predict, rate, select, summarize, support, value	making judgments based on internal evidence or external criteria

Experiment - 5 tot marine 9 micture of Rick by Conductometer Estimation Titration Name: doma Thasnim Roll. NO .: 20211PETODIG torst allerad AIM: To estimate the concentration of mixture of acids by conductometric titistion. PRINCIPLE: When a midule of acids (strong acid [HCE], weak acid [CH3600H] van titrated against a strong base [NaOH], strong acid wordt strong acid reads first followed by in weak acid. the acids are consumed, there is a steep increase in conductivity observed on the graph. elpter both REALIZONS : NOOH + HU >> Nall + H20 41.3 CH3600H + NaOH -> CH3600 + Nat + H2O. and St. NaOH Solution, Acid muture CHEMICALS : distilled water. > The lewette is filled with st. NaOH solution and the motion (strong acid + neede acid) g some is taken in a roome Beaker. PROCEDURE : 2) The conductivity cell connected to the instrument dip is dipped in the leaker with the mixture and NaOH is titrated at 0.5 ml REGISTRAR

rus

the readings are noted down.

37 Conductance decreases, stays constant and increases later. A graph is platted and vol. base is calculated.

TABLE . ANAL

Volume g NaOH (ml)	(mho)	Volume g NaDH (ml)	(mho)	
0 · D	18.5	Partinged 8.5 Jan m	7.2	
a da 0.5 shill have	17.3	9.0	8.0	
1.0 provide	15.6	915	12 : 187.8014799	
1,5	14.1	10.0 L Harry	9.5	
- 2.0 havenue	12.6	10.5 Bara	10.2	
2.5	10.8	11.0 200 1	15 11.1	
3.0	9.6	11.5	11,8	
3.5	8.3	12.0	12.7	
4.0	6.8	12.5	13.5	
4.5	5.5	13.0 NIC N	14.0	
5.0	5.2	13.5	110 14.9	
5,5	5.5	14.0	15.6	
6.0	5.8	14.5	: 2 116:3 11	
6.5	6 · 1	15.0	17.0	
7.0	6.3	15.5	17.7	
ד,5	6.6	- 16·D	18.4	
8.0	6.9	16.5	- BUUL	

SOTILELOOIT

CALCULATEON :

 $WF \cdot HU = Normality g HU + Eq. Wt g HU$ $= 0.046 \times 36.5$ = 1.679g.

Estimation 2 (H3100H -
Vol. 9 NaOH Huquid to neatralize
$$CH_{3}(00H = (V_{2} - V_{1}) \text{ ml}$$

 $= 8.5 - 4.6 = 3.9 \text{ ml}$
Normality 9 (H3100H = Nor NaOH × Vol. 2 NaOH
 $= (0.5)(4.6)$
 $= 0.04.6N$
 $= 0.04.6N$
 $= 0.04.6N$
 $= 0.04.6N$
 $= 0.04.6N$
 $= 0.04.6N$
 $= 0.04.6N$

REPORT

$$V_1 = 4.6ml$$

 $V_2 = 8.5ml$
Weight $g \frac{\mu \alpha / 2}{\mu 3 (00H) / 2} = \frac{1.679}{2.7623g}$

Anna plan x Hara and and g samant

1. Stores

WH. HUM Y DH & BROWNON WH. HUM SAF X BILLO . BF+ 0.1 .

Externation & its way used to annihility and the

Monthly & Mission in the second in the secon

REGISTRAR REGISTRAR

Date :

DozILPETODI6 Batch No

SOTILLELOOIT

Naily Nihad PAGE NO : 20211PETOOLS DATE: 24/03/2022 Experiment 11- (Determination of pka value, of weak heid usig pt motor) Almi-To determine die plan value of given weak acid usig pH notor. Principlet $HA(aq) + H_2 0 \neq [H_3 0^+] + A^-$ Ka: [H, OT] [A] THA pH = pka+loj [Galf] facid Apponations of chanical requiredi-Appanatus: 100 ml bealter, 50 mL bealter 25 mL pipette, glans rod, 50 mL burette burette stand gloss - caloniel electroile assembly connected to pH - meter chemicals: weall acid, NaOH & dis filled water anne REGISTRAR

PAGE NO : 1 DATE : Procedure 1-- 4 To the given 25 mL of weak acid solution all de ont cldis tilled water in 100 ml beglier. -> A glaw electroite - calonel electrode averably is rive with distilled water & immerse in the bealter, switch on the ph sign meter & record his pt. -> Add standard xlaOH solution from in burette in the intervals of 0.5 me at the time of the solution is bubble using glaw tube for niving. Record the pH value cisolution after each addition of NaOH & continue till the equivalent point is read (pH 10-11) > Tabulate the readings & plat dorivative graph using Aph / ALI value on y-axis V/6 volumie of alcold on x-orais to determine the equivalence point of plot he selond graph using pH value on y-axis VIS volume of MOH on x-axis to determine equivalence port, bout equivalence point & pla values. The pH at half equivalence point is gives pla value of the good. que REGISTRAR

				PAGE NO	
	Table1-				
mi ci-	Nolume of AboH	p H		Ap14	ApH/AV
MES	('\1'mL)				
		2.05	ALL	X11L	NIL.
nioh	 0.5	2.90	0.5	2.3	4.6
ive wim	1.0	3.18	0.5	2.18	4.36
on he	1.5-	3.56	0.5	2.06	4.12
	 2.0	3.86	0.5	1.86	5.72
	 2.5	4.09	0.5	1.59	3.12
hie	 3.0	4.43	0.5	1.43	d.16
5 bubble	 2.5	4.78	0.5	1.28	2.56
re ci-	 4.0	15.16	0.5	1.16	2.32
Jill Nie	 4.5	6.72	0.5	2.21	4.44
	 6.0	4.30	0.5	7.3	14.6
	 6.5	12.43	0.5	6.93	13.86
VAIN	 6.0	12.52	0.5	6.53	13.16
_ 01	 6.5	12:69	0.5	6.19	12.38
It he	 7.0	18.20	0.5	45 72	11.44
OF NOOH	 1.0	12.84	0.5	5.74	10.68
equivalence	 9.0	12.94	0.5	4.84	9.78
once point	 8.0	12.93	0.5	4.4 3	8.86
	 <u> </u>	11.95	0.5	3.95	7.9
	<u>4</u> .0	12.00	0.5	3.49	6.96
	 7.5	12	0.5	3.01	6.01
	 0,0	10.01			
	 			2	
				Betwee ENCY UNIT	
			RE		
				* BANGALOS	

20211PETOOU. PAGE NO : DATE : (straphi-У pka pH 1 volume of NaOH (mL) (alculation- / Repulti-Volume of North at hall of equivalence paint ve = 8.5 ml Therefore pliq value of weak goid = 5.2 1 3 anne REGISTRAR

202117ET0002 -Potentiometeric Estimation of Ison Using standard Potassium Dichsomate Solution-:= <u>Aim</u>: To determine the amount of Ison present in the given solution Using standard K2(3, Dg := <u>Perinciple</u>: This experiment involves the determination -on of FAS in an Unknown Sample by Sedox titration with Standard potassiums dichsomate Solution. $= \frac{Reaction}{Cr_2 o_2^2} + 6Fe^{2+} + 14m^+ - 2(r^{3+} + 3m_2 0 - - 0)$:= Equation: [Neinest Equation] E= E° + 0.0591 log Nox - D D. Ased $E = E^{\circ} + \underbrace{0.0591}_{3} \underbrace{\log _{0} C^{\circ +}}_{C_{3} T}$ $= \underbrace{\operatorname{Proceduse:}}_{z = 0}$ () 25 ml of given ison solution is pipetted out. 10 ml of dil. H2 SOY and 90 ml of Water adding upto 100 ml of a 250 ml beaker. beaker. REGISTRAR Registrar

Weight of Ison present in 1 litre of this solution = [NFAS & equivalent Weight of then) = (0.014) (55.85)g/L =) 0.78199/L := Report: Volume of K2 G2 O2 (V,)= 3.5 mL Dosmality of 12 Gz Oz (N,)= 0-1N Normality of Ison Solution (NERS) = 0.0142 Weight of Iron Present = 0.7819 g/L. REGISTRAR

- Expeniment OS-Estimation of Mixture of Acids By Conductometer Titeration := Aim: ID Estimate the concentration of mixture of acids by conductometric titration. := Drinciple: When a mixture of acids [Strong acid (MCL)], Weak and [Cn3COOM] are stituated against a strong base [NaOM] Strong acid reacts first followed by a Weak Acid. After both the acids are consumed, These is a steep increase in The Conductivity Observed on the graph. := Reactions: NaOM + MCL -> NaCL + M20 $CH_3 COOH + NaOH \longrightarrow CH_3 COO^- + Na^+ + H_2 O$. := Chemicals: St. NOOM solution, Acid mixture and distilled water. in := Broceduse: () The bosette is filled with St. NaOH Solution and the Mixtone [Strong acid + Weak aud] of Some is taken in a coume Beaker. I The Conductivity cell is connected to the installment is dipped in The beaker with the mixture and wind on is fitsated at 0.5 ml intervals and the manage are

:= Table:

Value de Nach	Conductance	Volope of NaOM	Conducto
(ml)	(mho)	(ml)	(mho)
0.0	18.5	8.5	7.2
0.5	17.3	9-0	8-0
1-0	15.6	9.5	8-8
1.5	14 - 1	10.0	9.5
2-0	12-6	10.5	10-2
2.5	10-8	11.0	11-1
3-0	9.6	11-5	11-8
5-5	8.3	12-0	19.2
4-0	6.8	12-5	13.5
4.5	5.5	13-0	14-0
5.0	5-8	13.5	14-9
5.5	6-1	14-0	15-6
6-0	6.3	14.5	16.3
6-5	6-6	15.0	17-0
7-0	6.7	15-5	17-7
7-5	6-8	16-0	18-4
8-0	6.9	16.5	-

REGISTRAR

= Calculation: Estimation of HLL Normality of St-NaOH - 0-SN Vol-mixtose of acids pipetted out - some Vol-NOOM required to neutralinge MLL - VimL Normality of MCL = Nor. Noroh X Vol of Noroh = (0.5)(4.6) = 0.046Wt. Mcl = Normality of Mcl X Eq. Wt of Mcl = 0.046 × 36.5 = 1.6799: Vol. of North sequired to neutralize CH3 coon - (2-v,) and := Estimation of CH3 COOM: Normality of CH3 Coots = Not of NaOH - Vol-NaOH = (0.5) (4.6) > 0.040N)

: Wt of Ch3coom/L = Nor of Ch3coom XEq Wt of Ch3coon D (0.046) (60.05) 2·7629/ := Report: V, = 4.6 ml V2= 8.5 ml Weight of Mc2/2= 1-6799 Weight of Ch3 COOM/L= 2-762g//

Noted down.

REGISTRAR

- Exp-4-20211PET0002 -Estimation of Copper from industrial elements by the Colorimeter Method-:= <u>Aim</u>: To estimate the amount of Copper present in given solution by colorimeter method. := (Larinciple: AZECT E is the motor extinction Co-efficient Constant at a given Wavelength), t is the thickness. The absorbance (VS) Concentration graph gives balance of the standard series solution is measured Using Photoelectric Colorimeter at 610 nm and platted against Vol. Cusoy to get the care. A deep blue Copper atmonium Complex ion is formed when Cort ions are mixed with ammonia according to the following seaction, $C_{0^{2+}} + 4NH_3 \longrightarrow [C_{0}(NH_3)_4]^{2+}$ When Mono-Chromatic light is Passed := Folmula: $I_0 = I_t + I_a + I_r$ Io = Intensity of light, It = Reflected light, In = Absorbed light It = Thansmitted Light.

 $T = I_{t}/I_{0}$ T= Bansmittance $-\log T = \log [I_0/I_t] = A$ A = Absolbance := Procedue: () Fill up the borette with ammonia. Take Sml of annound in each of the flasks. Add \$ 10, 15, 20 de 25 ml of Cusa, where the starts and the flasks. Solution from a guinsed busette into the flasks & dilute them with water Up to the mark. 1) Add distilled Water to the Unknown solution upto the (i) Measure the absorbance of all the 6 solutions against blank [5ml ammonia + Water] at 610 nm using photoelectric claiments Coldimeter. 1) Plot a graph with absolute (y-aris) and Vol-Cusoy (x-axis) to gird out the amount of Cusoy present in the Unknown solution-ame REGISTRAR

0 1 -- 41

Observation Table:

Flask No.	Vol. Cusoy (ml)	Vol- NM3 (ml)	Absabance O/Nil)
0	Hank	5	0.03
1	5	5	0.06
2	10	5	0.09
3	15	5	0.12
14	20	5	
7	25	5	0.13
5		5	0-06
6	Test Solution		

4 mg of Cusoy = 63.55 mg of Cux 4 = 'y'mg of Cu := Calculation: Y= 1.018 mg of CU. Guiren stest solution Contains = V* y = (12.5) (1.018) > 12.725 mg of

Amount of Copper present in the Unknown polition Result. :2 is 12.725 mg.

Experiment : 5

Mohamed Soudullah. S

202118570001

001

12

Estimation of Strength of mixture of acids by conductometric titration.

Aim :

To estimate the concentration of mixture of acids by

Conductometric titration

Principle:

The conductivity of the solution is related to the mobility of ions which in two delated with the size of the ions. When a mixture of strong acid like (McL) and weak acid, are titrated against a followood by weak and .

NOOH + HUL -> Nach + H20

When the Whole strong acid is consumed, base react with weak and conductivity incleases as Unionisial weak acid becomes the ionised Selt.

CH3 COOK + NOON -> CH3 COOT + Nat + H20

After both the acids are consamed, there is a step increases in conductivity which gives the endpoint and this increased in conductivity is due to the Bart June here moving hypoliosure ions from the touse.

REGISTRAR

Registra

Appanations : 100 ml hinkon -2, 50 ml - braken -1, 50 ml measuring ... glass vore - 1, 50 ml buetle -1, busetle grand-1,

conductivity all consider to conductivity motor.

Chemicals: Std. Abort Schulion, Acin piscture and distilled usater.

Procedure :-

- 1. Take Some mixture of strong acid and woak acid in loom beaker.
- 2 Fill the bustle with standard Naoth solution.
- 3. The condenctivity cell (pair of plan timem electrode) connected to the instrument dip is the best solution. so that the electrodes are completely immersed in the acid courtion and record the conductance.
- 4. Fod. Std. NaOH at the interval OF O.E. me with uniform string and note the condendance after each addition.
 - 5. conduction ce will decrease intially, remains almost constant in middle region and increases later.
 - 6. After complete nationalisation, the enounet of and present in the given mister can be and determined based on alkali consumed REGISTRAR

0,	Vac ay Na	OH Conductance
NO	(ml)	(Q-1) (m/10)
T	O	11. F
2	0.5	17.6
3	1.0	16.0
9	1.5	16.7
5	2	15 1.
6	2.5	13.9
7	3	12
8	2.(10.4
9	4	9.2
1	5 4.5	7.7
t	. 5	7.1
1	2 5.5	7-0
1	3 -6	7.2
14	6.5	7-5
L	5 Y	7-9
	7.5	8 - 1
19	R	8.4
10	r 8-5	8.191
	9	8-9
2	9-5	9-2
1	1 10	(0
2	2 10.5	10-8
2	3 11	11-4
2	T 10	12.2
21	12	1:3-1
27	13	13-1
28	13.5	14.2
29	14	15.2
30	14.5	15.8
31	15	14.3
82	15.5	IRY
33	16	17.2
39	11.5	19.7
2/	17	18.3
37	17.5	18-6
38	18-5	19
39	19	19.4
40	19.5	Ro.1
41	20	PA.2

F

0

Estimation of Hell'

Normality of Kel = 0.047N

= 0.047 × 365

Normality OF CH3000 = 0.0471

Therefore.

Mohamed Saadullah. S

Date 10-4-2022

20211 PET0001

Potentiometer estimation of iron using standard potessum dicromate Solution.

Aim: To determine the amount of iron present in the given solution using kacroon

Preinciple: Patentiometer titudion involves measurement of change in Potential of a solution at constant current on addition of trituant with the help of Righley sensitized electrodes. The electrodes commonly used are standard calomal electrode and pt usive electrode for redox graction.

During titrimetric process, addition of tritrant results in change in concentration of irons presents in test sut. This change in concentration of iron leads to change in potential according. The endpoint of such titration is delucted by an immidiate sharp change in Potential value delermine by plotting a graph manually using the potential values obtained during titration.

anne REGISTRAR

This experiment involves the deformination of tessous anomorium
Subprise (FAS) in an unknown sample by redox titration with
Standard potassium dichronists
$$g_{01}^{n}$$
 trea the titrate is fas solution
where $F_{c}(T)$ reacts with titrant C_{1}^{0T}
The end reaction is given
 $Cr_{2}O_{T}^{n} + bFe^{24} + 14e^{27} \longrightarrow 2.65^{27} + 6Fe^{34} + 7H_{2}O$
 $\boxed{3Fe^{24}}$
 $\boxed{2Fe^{37}}$

The Neutrequestion relates a solution potential to the concordation of seactors and products participating in the redox reaction Therefore, Neutrequestion is used to calculate the potential

Value (c).

$$\mathbf{F} = \mathbf{F}^{0} + \frac{0.0591}{m} \log \frac{\theta_{oxi}}{\theta_{oxi}}$$

Where, Poxi is oxidised from protal; Ared is Adviced form of Material E is standard potential; or is the neurober of elschors interneticed in redox reaction :. For the reaction Abarriet contain can be internet Apparetus: 100 ml bealer - 2, 50ml - traken - 1, DBml pipette - 1 glass Nod - 2, 50ml buautle - 2, burrette stand - 1, colond and platinum electroles connected to potentioneter.

Chemicals: Ivon, Std-k2 Cr207 Solution, Dil K2 Son and Distilled Water

Procedure: 1. Repetente out exactly 25ml of given iven contribut, and Inml of dilute H2Sen to maintain oxidic media and add unter up to book in a 250ml booker.

2. Rinse the std. calomal electrode and bright platinum electrode cossentally with distilled water.

B. In messe them in the reaction minduce to connect the electrode assembles to the palentioneles. Switch on the

Potentismeter and make sure initial value in 400 mV.

4. Add O.S.M. & standard 4nd Kocroon from the buritle, min throughly and notedown the reading after addition.

5. continue to procedure the till the potential increase more ropidly near the aquivalence point (10 mb is 30 readings of the equivalence is past there will be only slight integestion the prediction of the successive addition of the creation solo

Determine of Equivalence Point:

- 1. Plot a graph of DE/AV values along (y-asis) as volume of the con on (along x-asis)
- 2. The Maximum DE/DV Walks corresponds to equivalence point, from the considence point, draw & interapt to obtain the volume (u) of leg (200 solution.
- 3. Use V, value to calculate the hormality of the solution.

Prevantions :.

1. Electroals are sensitive and easily, Madle it corofully 2. Always keys the electicales dropped in Sol " 3. chromie is tonic . Manalle largfully

Calculation :-

Volume of k2 (20, Sol- colessponding to the squivalence Point (V,) = 4.0 ml (Obtained from graph) Normatiles of k2 cr207 Sol N, 20.1 N. Normality of Ivor Solution (1 Fed = N, XV. = 0.1 × 4 Viron 23

NFAS = 0.016 Weight of Fron prent in FI B. Is = NFas & quildalent peight 1 in Solution = NFas × 55.85 Spune

material

~ 0.8936 9/L REGISTRAR E=E" + - 3 -6821

slume	EMF OF E	100		
(ml)	(mv)	DE.	Δv	DEL
0.0	400	-	-	-
0.5	411	(1	0.5	22
1.0	418	67	0.5	14
1.5	428	10	0.5	20
2.0	438	10	0.5	20
2.5	458	16	ð-5	32
3.0	470	14	0.5	28
35	495	25	0.5	50
4.0	606	(1)	0.5	222
4.5	645	39	0.5	78
5.0	650	05	0.5	(0
5.(654	04	0.5	8
6.0	660	06	0.5	12
6.5	665	05	0.5	10
7-0	668	03	0.5	6
7.5	671	03	0.5	-6
80	675	04	0.5	10
8-5	677	02	0.5	4
9.0	679	02	0.5	4
9.5	68-1	02	0.5	4
10-0	683	02	0.5	4

Potentionetsic Estimation & Ison using standard
Potentionetsic Estimation & Ison using standard
Potension Debrowate Solution. [v. Toe sports]
Events and the second of Iran present in the gruen
Solution using standard k201207.
Putagle:
This experiment involves the determination of FAS
In an unbrash sample by sedar thration usite stan-
rdard potassion debramate solution.
Reaction:

$$Cr_2O_7^2 + GFe^{2+} + U H^4 - 200^{3+} + GFe^{3+} + H_20 \cdots$$

 $E = E^0 + \frac{0.0591}{100} \log \frac{A_{0}}{A_{Hed}} = 20$
 $E = E^0 + \frac{0.0591}{3} \log \frac{Cr6^4}{Cr5^4} = 3$
 FP
Procedures
(1) 25mill of given from Solution is pipetted out. Ionul of
 $dil + H_2Sou and 9 and of usiter adding upto Ionul of a
250 mill beaker.
(2) The standard calamet electrade and plathous declarded
are immedsed in the beaker with the providence and
before filtention.$

(3) With every 0.5 ml of 0.1N K2(1209 Brum the bretter into

lable:

Vol of KZGgoz (ml)	EMF OF E (MV)	ΔE	$\land \lor$	AE/AV
0.0	400	NIL	MIL_	MIL.
0.5	408	8	0.5	4
1.0	416	8	0-5	4
1.5	425	9	0.5	405
2.0	438	13	0.5	6.5
2.5	446	8	0.5	4
3.0	463	17	0.5	8.5
3=5	486	23	005	1105 -
400	607	121	0.5	60.5 -
405	634	27	005	13.05
5.0	643	9	0.05	list
5-5	645	2	0.0K	<u> </u>
6.0	654	9	0.05	U 05
6.5	657	3	045	105-
0°F	661	4	0.5	2
7.5	663	2	0.05	1
8-0	665	2	0.5	
8.5	666	1	0.5	0.5
9.0	668	2	0.05	
905	670	2	0.5	1
10.01	671)	0.5	0.05

Calculation:

Volume of $k_2(r_207 \text{ solution corresponding to the equivalence point <math>(V_1) = 3.5 \text{ ml}$.

Normality of K2C1207 Solution NI = 0°INI. - REGISTRAR REGISTRAR

Normality of Ison solution (NEAS) = $\frac{N_1 \times V_1}{Y_{100N}}$ = (0.01)(3.05) $= \frac{0.035}{25}$ = 0.014 N weight of Ison present fron little of pte solution = (NEAS X equivalent weight<math>06 Ison) = (0.014)(55.85)gh= 0.7819glL.

Report: Nolume of K2(1207 (V1) = 305ml Normality of K2(1207 (N1) = 001 N Normality of Ison Solution (NFAS) = 00014 N Weight of Ison Present = 0078199/L.

EXP_4: Estimation of copper Brow industrial ebbluents by colorimeter method. 20211PETODOB Aim: To estimate the anount of copper present in given solution by colorimeter method. Principle: A = Ect [Beq- Lambert's Law]. EB the molar extinction co-efficient (constant at a given wavenengthi), t is the thickness. The absorbance is concentration graph gives a straight line passing through the origin. The absor--bance of the standard series solution Breasured using photoelectric colorimeter at 610nm and plotted gailist vol. Cusay to get the curve. A deep blue cupsaammonium complex for B Bormed when Cit Pons are mored with ammonth a cuording to the Bollowing reaction, $Cu^{2+} + UNH_3 \longrightarrow [Cu(NH_3)_4]^{24}$ Formulas when monochromatic light is passed, $I_0 = I_t + I_a + I_v$ ID = Thensity of light It = reflected light Ia = absorbed light. It = transmitted light (negligible) T= It/In T = Transmittance -log T = log Io/It = A

	Procedure:					
(1)	Fill up the bure	PHa St and	P. Taka Fals	A MAMPA		
	reach of the Rigelie. Add 5 is said of an of Cubb sala					
	Brow a information	1 King Ha BL to	10,10,20 g 201	While theme with		
	water up to	the mark	e blasks and a	TIDLE IN DUT IN		
("1")	Add distilled	contraction to at a				
(hi)	Meanie to-	L FORE	nknown 30 lutto	n upto the mark.		
	blank (5 1	absorbance of	all the 6 solut	1003 against		
	Colorental	mmanPat water)	at 6100m with	a Nobacleictail		
ive	Diorimeter.			g poloacasic		
0.7	Mot a graph,	with absorban	and the second second			
	to find out t	le amount	e (y-axis) and	volocy Say (x -aris)		
	solution.	anouse of	cusou present f	the upleanan		
	observation	able				
Ī	Flaskin			1		
-	140	volicusou (ml)	VOINH3 (MI)	Absout		
	0	Blank	. 5	m350VISance		
-	1.	5	5	0.00		
-	2	10 .		0.03		
-	· U	15	5	0:10		
-	4	20	5	0.13		
-	5	25	1 1 5 ·	0.17		
-	6	Test Solution	5	0:08		
	Calculation:	> 12.5M		000		
	4 mg of cusoy	= 63.55 Mg	$\mathcal{B}(u \times 4 = 'y')$	mg ob Cu		
		u = 1.018 M	MOR CU			
		J	900			
(hiven tests	olution antam.	s = V * y mg c	Ban		
			=(12.5)(1.0	18/-12.225-2		
Ĥ	<u>Result:</u>			offu		
	Amount of a	opper present	A the unking	Solution B		

REGISTRAR

12.725 Mg.

Presidency University Act, 2013 of the Karnataka Act No. 41 of 2013 | Established under Section 2(f) of UGC Act, 1956 Approved by AICTE, New Delhi

Itgalpur, Rajankunte, Yelahanka, Bengaluru - 560064

Course Code: CHE1016	Course Title: FOR	ENSIC SCIENCE		L- P-	3	0	3
	Type of Course: 0	Open Elective		C			
Version No.	1.0						
Course Pre- requisites	NIL	NIL					
Anti-requisites	NIL						
Course	This course is an i	introductory look at th	e various fie	lds of fo	orensic	science	and
Description	how to the backg	round knowledge, fore	ensic examir	nations a	and soft	ware to	ols
	to solve unusual t	topics. It also emphasiz	es on devel	oping ar	n algorit	thm to s	solve
	and restore lost d	lata and reports.					
Course	The objective of	the course is to fami	iliarize the	learners	s with	<mark>the cor</mark>	<mark>icepts</mark>
Objective	<mark>of "Forensic Sci</mark>	ence" and attain EM	PLOYABILIT	<mark>Y SKILL</mark>	throug	gh PRO	BLEM
	<mark>SOLVING LEARNI</mark>	<mark>NG techniques.</mark>					
Course Out	On successful cor	npletion of the course	the student	s shall b	e able t	:0:	
Comes	1] Identify the sig	nificance of forensic so	cience to hu	man soc	iety.		
	2] Locate the divi	sions in a Forensic Scie	nce Laborat	ory.			
	3] Use the of Trac	ce Evidence, Ballistics a	nd Docume	nt exam	ination	by fore	ensic
	scientists.						
	4] Learn to gener	ate the algorithm, doc	umentation	using so	oftware	S.	
Course	This course inclue	des a broad series of le	essons and a	activitie	s that o	ffer a v	ariety
Content:	of modalities for	ultimate student engag	gement and	content	retent	ion. Eac	h unit
	contains a series	s of lessons that inclu	de introduc	ction of	conter	it, listin	ig the
	forensic science	laboratories, facilities	in labs, in	strumer	nts invo	lved, t	racing
	evidences and ex	amination. It also inclu	des forensio	c applica	tion in	restorir	ng lost
	data, documents	, writing algorithm for	the same a	and solv	ing few	case st	tudies
	using software to	ols.					
Module 1	INTRODUCTION	Assignment	Fundamen	itals		03 C	lasses
Topics:			I				
Definitions and P	ioneers. Historical	development of Foren	sic Science.	Principl	es of Fo	orensic	
Science.							
	FORENSIC						
Module 2	SCIENCE	Assignment	Data Colle	ction		06 C	lasses
	LABORATORIES						
Topics:							
Organization of [Organization of Directorate of Forensic Institutions State Forensic Science Laboratories. Divisions					sions	
of Forensic Science laboratories and its Functions. Use of important instruments – Microscopes,							
Spectroscopy, Video Spectral Comparator & Invisible Rays. Role of experts in crime investigation							
and detection.							
				X	ame	ACY UNIL	

Module 3	TRACING EVIDENCES	Case Study	Data Collection	08 Classes		
Topics: Trace Evidences a) Hair and fiber. 10 b) Glass Fractures c) Tool marks d) Paint and Soil. Forensic Ballistics. a) Meaning, Classification of firearms and ammunition. b) Identification of						
Module 4	FORENSIC EXAMINATION	Case Study	Data Collection	08 Classes		
Topics: Examination of D Forgeries – Mear Differentiation o	ocuments and Cur ning & Types b) Ide f genuine and cour	rency. a) Questioned D ntification of hand writ nterfeit currency coins a	ocuments: Meaning and Typ tten documents – Authors c) & Notes.	oes- (i)		
Module 5	FORENSIC APPLICATIONS	Assignment	Programming	10 Classes		
Probability popu Transfer evidenc systems, Quality Developing an al processing, Repo Targeted Applica 1. Belkasoft	Probability population and sampler, weight of evidence and the Bayesian likelihood ratio, Transfer evidence application of statistics to particular areas of forensic science, Knowledge base systems, Quality base of system General concepts and tools, Arithmetic and logical operation, Developing an algorithm to solve problem, Modularization, Function and procedures, Arrays, File processing, Reports and control breaks, Processing the date. Targeted Application & Tools that can be used: 1 Belkasoft live BAM Capturer					
3. Volatility		the Truck of Duciest (A			
 Project work/Assignment: Mention the Type of Project /Assignment proposed for this course 1.Probability population and sampler using tool (Volatility) 2. Develop an algorithm to solve how to restore lost data, reports. Assessment Type Midterm exam Assignment (review of digital/ e-resource from PU link given in references section - mandatory to submit screen shot accessing digital resource.) Quiz End Term Exam Self-Learning 						
1. Criminalistics:	1. Criminalistics: An Introduction to Forensic Science by Richard Saperstein, Prentice Hall.					
 References 1. Computer forensics: evidence collection and management by Robert C. Newman and Boca Raton FL, Taylor and Francis. 2. Forensic Computer Crime Investigation By Jr Thomas A Johnson, Taylor and Francis, CRC 						
Press 3. Introduction to Statistics for Forensic Scientists by David Lucy, Wiley publications.						
4. Digital Ev	idence and Compu	ter Crime, Academic P	ress			
E-resources: 5. <u>http://www.mysciteacher.com/wp-content/uploads/2018/05/forensic-seience-text.pdf</u>						

6. <u>https://notesmed.com/wp-content/uploads/2021/05/The-Essentials-Of-Forensic-Medicine-And-Toxicology-33rd-edition.pdf</u>

Topics relevant to Employability Skill Development: listing the forensic science laboratories, facilities in labs, instruments involved, tracing evidences and examination for Developing Employability Skills through Problem solving Techniques. This is attained through assessment components mentioned in course handout.

Topics relevant to Human Values & Professional Ethics: Principles of Forensic Science.

Catalogue	Dr. Chaitanya Lakshmi. G
prepared by	
Recommended	PU/SOE/CHE/BOS-05/2021-22
by the Board of	5 th BOS: 6 th August 2021
Studies on	
Date of	16 th Academic council, PU/AC-16/MEC/2018-2022/2021
Approval by	23 rd Oct, 2021
the Academic	
Council	

(Established under the Presidency University Act, 2013 of the Karnataka Act41 of 2013)

ACA-2[2019] COURSE HAND OUT

SCHOOL: School of Engineering DEPT.: Chemistry NAME OF THE PROGRAM: Bachelor of Technology P.R.C. APPROVAL REF.: PU/AC-16/CHE/2021 SEMESTER/YEAR: 7th Semester /4th Year COURSE TITLE & CODE: Forensic Science & CHE1016 COURSE CREDIT STRUCTURE: 3-0-3 CONTACT HOURS: 3hours/week (42 Hours) Course In-charge: Dr. Chaitanya Lakshmi. G

PROGRAM OUTCOMES:

PO 1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. (H)

PO 2: Problem analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. (M)

PO 3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. (L)

PO 4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO 5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

DATE OF ISSUE: 06th August 2021

PO 6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO 7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO 8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO 9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO 10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. (L)

PO 11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO 12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. (L)

COURSE PREREQUISITES: NIL

COURSE DESCRIPTION: This theory based course gives an introductory look at the various fields of forensic science, forensic examinations and software tools to solve unusual topics. It also emphasizes on developing an algorithm to solve and restore lost data and reports.

This course caters to Human Values & Professional Ethics

Course Objective: The objective of the course is to familiarize the learners with the concepts of "Forensic Science" and attain EMPLOYABILITY SKILL through PROBLEM SOLVING LEARNING techniques.

CO1	Identify the significance of forensic science to human society.	Knowledge Level
CO2	Locate the divisions in a Forensic Science Laboratory.	Comprehension Level
CO3.	Use the Trace Evidence, Ballistics and Document examination by forensic scientists.	Application Level
CO4.	Learn to generate the algorithm, documentation using software.	REGISTRAR

COURSE OUTCOMES: On successful completion of the course the students shall be able to:

MAPPING OF C.O. WITH P.O. [H-HIGH, M- MODERATE, L-LOW]

C.O.N0.	P.O.01	P.O.02	P.O.03	P.O.10	P.O.12
C.O. 01	М			L	L
C.O. 02	L	М	L		L
C.O. 03	L	М	L		L
C.O. 04	L	M	L	L	M

COURSE CONTENT (SYLLABUS):

Module 1: Introduction

Introduction to Forensic Science: Definitions and Pioneers. Historical development of Forensic Science. Principles of Forensic Science.

Module 2: Forensic Science Laboratories

Organization of Directorate of Forensic Institutions State Forensic Science Laboratories. Divisions of Forensic Science laboratories and its Functions. Use of important instruments – Microscopes, Spectroscopy, Video Spectral Comparator & Invisible Rays. Role of experts in crime investigation and detection.

Module 3: Tracing Evidences

Trace Evidences a) Hair and fiber. b) Glass Fractures c) Tool marks d) Paint and Soil. Forensic Ballistics. a) Meaning, Classification of firearms and ammunition. b) Identification of firearm and the shooter. c) Explosives: meaning & classification Types

Module 4: Forensic examination

Examination of Documents and Currency. a) Questioned Documents: Meaning and Types- (i) Forgeries - Meaning & Types b) Identification of hand written documents - Authors c) Differentiation of genuine and counterfeit currency coins & Notes.

Module 5: Forensic Applications

Probability population and sampler, weight of evidence and the Bayesian likelihood ratio, Transfer evidence application of statistics to particular areas of forensic science, Knewledge base systems, Quality base of system General concepts and tools, Arithmetic and logical operation Developing an

[10Hours] [Application Level (3)]

[10 Hours] [Application Level (3)]

[7 Hours] [Comprehension Level (2)]

[5 Hours] [Knowledge Level (1)]

[10 Hours] [Synthesis Level (4)]

algorithm to solve problem, Modularization, Function and procedures, Arrays, File processing, Reports and control breaks, Processing the date.

DELIVERY PROCEDURE (PEDAGOGY):

Participative Learning: Probability population and sampler, weight of evidence and the Bayesian likelihood ratio (through Group Discussion).

Problem Based Learning: Probability population and sampler, weight of evidence and the Bayesian likelihood ratio, Transfer evidence application of statistics to particular areas of forensic science (Scenario Based)

Technology Enabled Learning: Arithmetic and logical operation, Developing an algorithm to solve problem, Modularization, Function and procedures, Arrays, File processing, Reports and control breaks, Processing the date. (NPTEL Videos) by Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P)

Active learning: Use of Volatility and Knowledge base systems, Quality base of system General concepts and tools

https://www.volatilityfoundation.org/

https://www.volatilityfoundation.org/releases

https://www.volatilityfoundation.org/releases-vol3

Self-learning topics: Arithmetic and logical operation, Developing an algorithm to solve problem,

Modularization, Function and procedures, Arrays, File processing, Reports and control breaks,

Processing the date.

REFERENCE MATERIALS: Textbooks, reference books, any other resources, like webpages.

Textbook:

- 1. Criminalistics: An Introduction to Forensic Science by Richard Saperstein, Prentice Hall.
- 2. Introduction to Forensic Sciences by William G Eckert, CRC Press.

Reference books:

- 1. Computer forensics: evidence collection and management by Robert C. Newman and Boca Raton FL, Taylor and Francis.
- 2. Forensic Computer Crime Investigation By Jr Thomas A Johnson, Taylor and Francis, CRC Press
- 3. Introduction to Statistics for Forensic Scientists by David Lucy, Wiley publications.
- 4. Digital Evidence and Computer Crime, Academic Press

E-resources:

- 1. <u>http://www.mysciteacher.com/wp-content/uploads/2018/05/forensic-science-text.pdf</u>
- 2. <u>https://notesmed.com/wp-content/uploads/2021/05/The-Essentials-Qf-Forensic-Medicine-And-Toxicology-33rd-edition.pdf</u>

Video Links:

- 1. <u>https://onlinecourses.swayam2.ac.in/cec20_ge10/preview</u>
- 2. <u>https://www.youtube.com/watch?v=VVXMidZzifg</u>
- 3. <u>https://www.youtube.com/watch?v=pBogHJqCY08</u>

GUIDELINES TO STUDENTS:

- Be attentive and regular to class
- Refer class materials and also you can refer online materials, YouTube videos, NPTEL etc.
- Students should come prepared with the basics of the topics that will be covered in the next class
- No make-up for Assignment and Quiz
- Recommended to take NPTEL online certification course
- All course related information will be displayed on the SoE notice board

COURSE SCHEDULE: [dates are subject to minor changes]

SI. No.	ΑCTIVITY	STARTING DATE	CONCLUDING DATE	TOTAL NUMBER OF PERIODS
01	Over View of the course	23/8/2021	23/8/2021	1
02	Module : 01	24/8/2021	7/9/2021	5
03	Assessment 1	13/9/2021		1
04	Module: 02	14/9/2021	05/10/2021	7
05	Test-1	15/9/2021	17/9/2021	1
06	Assessment 2	18/10/2021		1
07	Module:03	11/10/2021	08/11/2021	9
08	Assessment 3	9/11/2021		1
09	Module:04	15/11/2021	22/11/2021	7
10	Test-2	15/11/2021	17/11/2021	1
11	Module:05	23/11/2021	7/12/2021	10
12	Assessment 4	7/12/2021	- REG	STRAR
13	Revision	6/12/2021	8/12/2021	1
----	----------	------------	-----------	---
14	End Term	13/12/2021	5/1/2022	1

SCHEDULE OF INSTRUCTION:

SI. no	Session no[date if possible]	Lesson Title		Topics	Course Outcome Number	Deliver y Mode	Reference
1	S1	Overview of Cou	rse	Introduction to Forensic Science	CO.No.1	РРТ	T1,ch1
2	S2	Introduction to F Science	orensic	Definitions and Pioneers.	CO.No.1	РРТ	T1,ch1
		Histroy		Historical development of Forensic Science.			
3	S3				CO.No.1	РРТ	T1,ch2
4	S4	Principles		Principles of Forensic Science.	CO.No.1	РРТ	T1,ch2
5	S5	Principles		Principles of Forensic Science.	CO.No.1	РРТ	T1,ch2
6	S6	Assessment 1 – C	lass Tes	st			·
			Mo	odule 1 completed			
7	S7 E F C N	Based on Principles of Forensic Science liscussed in Module 1;	Role of Scene along v Import	experts in Crime will be discussed vith uses of ant instruments	CO.No.1	РРТ	T1,ch3
8	S8 F	orensic Science aboratories.	State Labora	Forensic Science tories.	CO.No.1	РРТ	T1,ch3
9	S9 C	Divisions and its functions.	Divisio Science its Fun	ns of Forensic e laboratories and ctions.	CO.No.2	РРТ	T1,ch4
10	S10 U	Jse of important nstruments	Micro Spectr	scopes, oscopy	CO.No.2	РРТ	T1,ch4
11	S11 L	Jse of important nstruments	Video S Compa Rays	Spectral rator Invisible	CO.No.2	PPT	T1,ch6
12	S12 C	Crime nvestigation and letection.	Role of investi detect	f experts in crime gation and ion.	CO.No.2	Problem Based Learning	T1,ch6 Registrar

13	S13	Assessment 3 – Quiz						
			Module 2 completed					
14	S14	By the knowledge of use of important instruments analysis of Trace evidences:	ce Evidences a) Hair and fiber	CO.No.3	РРТ	T1,ch5		
15	S15	Trace Evidences	Glass Fractures	CO.No.3	РРТ	T1,ch5		
16	S16	Trace Evidences	ool marks	CO.No.3	РРТ	T1, ch5		
17	S17	Trace Evidences	aint and Soil.	CO.No.3	РРТ	T1,ch5		
18	S18	Forensic Ballistics	Forensic Ballistics. a) Meaning, Classification of firearms and ammunition	CO.No.3	РРТ	T1,ch5		
19	S19	Forensic Ballistics	Forensic Ballistics. a) Meaning, Classification of firearms and ammunition	CO.No.3	РРТ	T1, ch7		
20	S20	Firearm.	. b) Identification of firearm and the shooter.	CO.No.3	PPT	T1, ch7		
21	S21	Explosives	c) Explosives: meaning & classification Types	CO.No.3	Problem Based Learning	T1, ch7		
22	S22	Explosives	c) Explosives: meaning & classification Types	CO.No.3	Problem Based Learning	T1, ch7		
23	S23	Assessment 3 – Qu	iz		·			
	•		Module 3 completed					

Module 3 completed

24	S24	By the knowledge	Examination of Documents and	CO.No.4	Problem	T1, ch8
		examination and use of important instruments:	Currency. a) Questioned Documents: Meaning and Types-		Learning	
25	S25	Examination of Documents	Examination of Documents and Currency. a) Questioned Documents: Meaning	CO.No.4	РРТ	T1, ch8
26	S26	Examination of Documents	and Types- (i) Forgeries – Meaning & Types	CO.No.4	РРТ	T1, ch8
27	S27	Examination of Documents	b) Identification of hand written documents – Authors	CO.No.4	PPT REGISTRAR	T1, ch8

28	S28	Examination of	b) Identification of	CO.No.4	PPT	T1, ch9
		Documents	hand written			
			documents – Authors			
29	S29	Examination of	c) Differentiation of	CO.No.4	Participative	T1, ch9
		Currency.	genuine and		Learning	
			counterfeit currency		U U	
			coins & Notes.			
30	S30	Examination of	c) Differentiation of	CO.No.4	РРТ	T1, ch9
		Currency.	genuine and			
			counterfeit currency			
			coins & Notes			
31	S31	Examination of	c) Differentiation of	CO.No.4	РРТ	T1, ch9
		Currency.	genuine and			
			counterfeit currency			
			coins & Notes			
32	S32	Examination of	c) Differentiation of	CO.No.4	РРТ	T1, ch9
		Currency.	genuine and			
			counterfeit currency			
			coins & Notes			
33	S33	Assessment 4 – Quiz				•
			Module 4 Completed			
			p			
34	S34	By the data collected	Probability population	CO.No.4	РРТ	T1, ch9
		, during the trace	and sampler, weight			,
		evidence:	of evidence			
35	S35	Bayesian likelihood	Bayesian likelihood	CO.No.4	Technology	T1,ch10
		ratio	ratio		Enabled	,
					Learning	
36	S36	Transfer evidence	Transfer evidence	CO.No.4	Problem	T1,ch10
			application of statistics		Based	
			to particular areas of		Learning	
			forensic science		20011118	
27	C27	Transfor ovidence	Transfor ovidonco		Problom	T1 ch11
57	337		application of statistics	CO.NO.4	Problem	11,0111
					Baseu	
			to particular areas of		Learning	
			forensic science,			
38	S38	Knowledge base	Knowledge base	CO.No.4	Problem	T1, R2ch1
		systems	systems, Quality base		Based	
			of system		Learning,	
39	S39	Arithmetic and logical	General concepts and	CO.No.4	Problem	T3,R2,ch2
		operation	tools		Based	
					Learning	
40	S40	Quality base of system	Arithmetic and logical		0	
			operation		anne	
41	S41	Developing an	Developing an		Ser Ser	CAN AND AND AND AND AND AND AND AND AND A
		algorithm to solve	algorithm to solve		REGISTRAR	istrar)
L					*BANG	ALOR

		problem	problem			
			Modularization			
42	S42	Revision				
43	S43	Assignment 5 - Written	assignment and upload	d in Edhitch	/Quiz	
	Module 5 completed					

Topics relevant to Employability Skill Development: listing the forensic science laboratories, facilities in labs, instruments involved, tracing evidences and examination for developing Employability Skills through Problem Solving Techniques. This is attained through assignments as mentioned in assessment schedule.

ASSESSMENT SCHEDULE:

SI. No.	Assessment type	Contents	Course outcome Number	Duration In Hours	Marks	Weightage	Venue, DATE &TIME
1	Assessment 1 – Class Test/MCQ	Based on module 1	CO 1	1 hour	10	5%	CLASSROOM
2	Assessment 2– Problem solving Assignment	Based on module 2	CO 2	1 hour	10	5%	CLASSROOM
3	Assessment 3 – Quiz	Based on module 3	CO 3	1 hour	10	5%	CLASSROOM
4	Assessment 4 - assignment 2 and upload in Edhitch/Quiz/MCQ	Based on module 4	CO 4	1 hour	10	5%	HOMEWORK
5	Test 1	Based on module 1 and 2	CO 1 and CO 2	1 hour	30	15%	15/9/2021 to 17/9/2021
6	Test 2	Based on module 2 and 3	CO 2 and CO 3	1 hour	30	15%	15/11/2021 to 17/11/2021
7	End Term	Based on module 1, 2, 3 &4	CO 1, CO 2, CO 3 & CO4	3 hours	100	50%	13/12/2021 to 5/1/2022

COURSE CLEARANCE CRITERIA: (Here mention the minimum requirements of attendance, marks in continuous assessment & term end examination, make-up exam policy and other details as per the academic regulations & PRC):

Students are advised to maintain a minimum attendance of 75% in this course. Failing which, the student will not be permitted to attend the end term examination and subsequently awarded "NP" grade.

Also, minimum performance of 40% (40 marks/100) in continuous assessment and 40% (40 marks/100) in end term exam is required to clear the course. Failing which, the student will be awarded "NE" (not eligible) grade and/or "F" (fail) grade respectively.

CONTACT TIMINGS IN THE CHAMBER FOR ANY DISCUSSIONS:

To be notified by the Instructor based on the timetable.

SL NO	QUESTION	MARKS	COURSE	BLOOM'S LEVEL
			OUTCOME NO.	
1.	Which of the following is the best definition of forensic science? A. Using proper scientific techniques to understand the layout of a crime scene. B. The application of scientific knowledge and technology to the analysis of crime scene evidence. C. Understanding the process in which a crime was committed. D. The science studying the origins and background of crime scene investigation.	2	CO.No.1	Knowledge
2.	Light that has all its waves pulsating in unison is called	2	CO.No.1	Knowledge
	(A) Maser		REGISTRA	Registrar

* PANGALON

SAMPLE THOUGHT PROVOKING QUESTIONS:

	(B) Laser			
	(C) Monochromatic light			
	(D) Polychromatic light	-		
3.	A scientist can determine the method of removal for a hair when analyzing hair samples. CH3 A. True B. False	1	CO.No2	Comprehension
4.	Which of the following is an example of an individual characteristic that can definitely be associated with one individual? CH3 A. Fingerprint ridges B. Custom paint on a vehicle C. Blood types D. Materials in plastic bags	2	CO.No.4	Knowledge
5.	 Hollow Cathode Lamp (HCL) is used in the following: (A) Atomic Absorption Spectrometer (B) Atomic Emission Spectrometer (C) Infra Red Spectrometer (D) X-ray Fluorescence Spectrometer 	2	CO.No.3	Comprehension

SAMPLE ASSIGNMENT QUESTIONS:

SL NO	QUESTION	MARKS	COURSE	BLOOM'S LEVEL
			OUTCOME NO.	
1.	The suspect one of a crime scene when investigated had particles of soil on this clothes, whereas the suspect two on investigation did not carry any. According to what Principle of Forensic Science the suspect one can be further investigated? State that principle.	10	CO.No.1	Knowledge
2.	In addition to physical sciences laboratory unit, which five other laboratory units you think are so important in a full-service a crime labs? List at least one function performed by these units.	10	CO.No2	Comprehension
3.	The document authenticity and verification for any type of erasure is carried out by an instrument. Name that instrument and elaborate the type of erasures that can be detected.	10	CO.No3	Comprehension
4.	From the crime scene the nature of evidence collected was found to be nonvolatile, complex mixture, name which analytical technique that should be made use in order to analyze the evidence and mention the principle involved.	2	CO.No.4	Application
5.	Write a flow chart to recover deleted email from a gmail account?	10	CO.No.4	Application

Target set for Course Outcome attainment:

SI. No.	C.O. No.	Course Outcomes	Target set	for
			attainment	in
			percentage	
01	CO1	Identify the significance of forensic science to human society.	35	
02	CO2	Locate the divisions in a Forensic Science Laboratory.	25	
03	CO3	Use the of Trace Evidence, Ballistics and Document examination by forensic scientists.	30	
04	CO4	Learn to generate the algorithm, documentation using softwares.	30	

chif calli-p

Signature of the course Instructor

This course has been duly verified Approved by the D.A.C.

talifet.

Signature of the Chairperson D.A.C.

Course Completion Remarks &Self-Assessment. [This has to be filled after the completion of the course]

[Please mention about the course coverage details w.r.t. the schedule prepared and implemented. Any specific suggestions to incorporate in the course content. Any Innovative practices followed and its experience. Any specific suggestions from the students about the content, Delivery, Evaluation etc.]

SI. No.	Activity	Scheduled Completion	Actual Completion	Remarks
	As listed in the course Schedule	Date	Date	
1	Over View of the course	23/8/2021	anne	ENCYUNIC
2	Module : 01	8/9/2021	REGISTRAR	Registrar
				84NGALOK

3	Assessment 1	13/9/2021	
4	Module: 02	12/10/2021	
5	Test-1	17/9/2021	
6	Assessment 2	13/10/2021	
7	Module:03	10/11/2021	
8	Assessment 3	12/11/2021	
9	Module:04	4/12/2021	
10	Test-2	17/11/2021	
11	Assessment 4	5/12/2021	
12	Revision	8/12/2021	
13	End Term	5/1/2022	

Any specific suggestion/Observations on content/coverage/pedagogical methods used etc.:

Course Outcome Attainment:

Sl. No.	C.O. No.	Course Outcomes	Target set for attainment in percentage	Actual C.O. Attainment In Percentage	Remarks attainment Measures enhance attainment	on & to the
01	CO1	Identify the significance of forensic science to human society.	35			
02	CO2	Locate the divisions in a Forensic Science Laboratory.	25			
03	CO3	Use the Trace Evidence, Ballistics and Document examination by forensic scientists.	30			
04	CO4	Learn to generate the algorithm, documentation using softwares.	30			

cht calling

Signature of the course Instructor

This course has been duly verified Approved by the D.A.C.

tradelet.

Signature of the Chairperson D.A.C.

BLOOM'S TAXONOMY

Learning Outcomes Verbs at Each Bloom Taxonomy Level to be used for writing the course Outcomes.

Cognitive Level	Illustrative Verbs	Definitions
Knowledge	arrange, define, describe, duplicate, identify, label, list, match, memorize, name, order, outline, recognize, relate, recall, repeat, reproduce, select, state	remembering previously learned information
Comprehension	classify, convert, defend, discuss, distinguish, estimate, explain, express, extend, generalize, give example(s), identify, indicate, infer, locate, paraphrase, predict, recognize, rewrite, report, restate, review, select, summarize, translate	grasping the meaning of information
Application	apply, change, choose, compute, demonstrate, discover, dramatize, employ, illustrate, interpret, manipulate, modify, operate, practice, predict, prepare, produce, relate schedule, show, sketch, solve, use, write	applying knowledge to actual situations
Analysis	analyze, appraise, breakdown, calculate, categorize, classify, compare, contrast, criticize, derive, diagram, differentiate, discriminate, distinguish, examine, experiment, identify, illustrate, infer, interpret, model, outline, point out,	breaking down objects or ideas into simpler parts and seeing how the parts relate and are organized
	question, relate, select, separate, subdivide, test	CATHER ENCY UND

REGISTRAR

Synthesis	arrange, assemble, categorize, collect, combine, comply, compose, construct, create, design, develop, devise, explain, formulate, generate, plan, prepare, propose, rearrange, reconstruct, relate, reorganize, revise, rewrite, set up, summarize, synthesize, tell, write	rearranging component ideas into a new whole
Evaluation	appraise, argue, assess, attach, choose, compare, conclude, contrast, defend, describe, discriminate, estimate, evaluate, explain, judge, justify, interpret, relate, predict, rate, select, summarize, support, value	making judgments based on internal evidence or external criteria

PRESIDENCY UNIVERSITY Private University Estd. in Karnataka State by Act No. 41 of 2013

SCHOOL of ENGINEERING DEPARTMENT OF CHEMISTRY

Ref.No.:PU/SOE/CHE /Assignment announcemnet/2020-21/3rd year/CHE1016

Course Title: Forensic science **Course Code**: CHE1016

Name of the Instructor in Charge: Dr. Chaitanhya Lakshmi G

Name of the Instructor: Dr. Chaitanhya Lakshmi G

Answer All the questions. Each question carries 10 marks

- 1. Write a flow chart to recover deleted mail form G-mail.
- 2. Discuss any four advanced techniques used in forensic science.

chil calling

Signature of Instructor In-Charge

(Dr. Chaitanhya Lakshmi G)

City Office: University House, 8/1, King Street, Richmond Town, Bengaluru - 560025 Campus: Presidency University, Itgalpur, Rajankunte, Bengaluru - 560064 Phone: + 80 4925 5533 / 5599 Email ID: info@presidencyuniversity.in www.presidencyuniversity.in

2. Explain any fine advanced technologies used in forensic science?

1. DNA Phenotyping -

DNA fragments extracted from hair, body fluids and time can be incredibly useful in forensic science. However if the owner isn't registered in a database, turning DNA into useful information can be a challenge. Deitere allare. This is where. DNA phenotyping Steps up. The field uses complex genetic information derined from genstyping or DNA Sequencing to predict physical & characteristics such as sen, faushape here & ayr colour some of the latest DNA phenstyping thehniques can predict Skin estour, though the ethics surrounding this are complecated.

Scalled with CamSca

Corbon Dating Carbon Dating is based on the idea that all hiving organisms observe atmospheric & radio active carbon also known as C14 as they age. Organisms stop absorbing at m. Groon when they die, though CI4 accumulated ones sheir life time continues to detonate. Analysing CIG in human ecminds, is a useful way to determine when a person died Ey their age at the time. Ones the past decade an increase in foesil fuel emicsion as emerged as a unique challeige for Carbon dating, with experts warning contendration of Gobon isotopes in the atmosphere are reaching unusally high levels. This could compromise the decuracy carbon dating sechniques. Faon bullets to bomb debris, isotope analysis Botope Detection is used by forensic investigators to trace the origin of explosiver. The tehnique is bard on the fact that most powerful explosives Contain abou oxygen Nitrogen and Hydroguaton comparing bostripes can be a useful way to analyze explosives and tract the source of origin. Scanned with CamSCa

Forensic Palynology Providing a convection between a person & a crime seen are object is often artical to building legal cases - Forensic palquology user pollen grain & spores to establish i help prove of a person is quilty or innocent. from tracting the origin of illegal drugs such as cocaine of juntanyl to linking affenders to incrimina fentanyl to linking affenders to incrimina fintanyl to linking affenders a myroid tig objects, palynology has a myroid of applications in forensic sien. Immunscheomatography Body fluids are often invaluable evidence for fovensic scientists. Innerocheo matographie strip tests can Simultaneously allow scientists to examine biblogiad stairs & uncoul Valable information about the origins of the fluid. The latest generation of the fluid. innurcleomatographic strip tests can simultaneously detect up to five body fluids. This ebinates the need for multiple fests & allows scientists to carry out multiple tests on a single sample.