

PRESIDENCY UNIVERSITY Presidency University Act, 2013 of the Karnataka Act No. 41 of 2013 | Established under Section 2(f) of UGC Act, 1956

Presidency University Act, 2013 of the Karnataka Act No. 41 of 2013 | Established under Section 2(f) of UGC Act, 1956 Approved by AICTE, New Delhi

Computational Physics PHY 2003

Course Code:	Course Title: Co	mputational Physics			2	0	2			
РНҮ 2003	Type of Course:	1] Open Elective		L- P- C						
Version No.	1.0									
Course Pre-	Knowledge of P	hysics and Mathematics t	ill class 12							
requisites										
Anti-requisites	NIL									
Course Description	This course introduces logarithmic concepts and familiarizes students with the basic computational tools which are essential for graduate students in computational physics and related areas. In this course, students work toward mastering computational skills and this course aims to give the students competence in the methods and techniques of calculations using computers. At the end of the course the student is expected to have a hands on experience in modeling, algorithm development, implementation and calculation of physical quantities. It is designed for the students who wishes to broaden their knowledge of applications and develop techniques.									
Course	The objective	of the course is to fam	iliarize the	learners	with th	e conce	pts of			
Objective	"Computationa	al Physics "and attain	Entrepren	eurship	Skill	Develo	oment			
	through Partic	<mark>ipative Learning</mark> techn	iques.							
Course Out Comes	 On successful completion of the course the students shall be able to: 1. Apply programming language to plot the graphical representation of a function 2. Apply interpolation techniques to estimate the result of a function 3. Solve partial differential equations using numerical computational techniques. 									
Course Content:										
Module 1	Introduction to Python programming	Assignment	Programmin	g/Simula	tion	Clas	No. of ses: 10			
Topics: Python: Variables and assignments, arrays, control structures, programming styles, plotting in Python, data input/output										

anne REGISTRAR

REGISTRAR

Registra

Presidency University Act, 2013 of the Karnataka Act No. 41 of 2013 | Established under Section 2(f) of UGC Act, 1956 Approved by AICTE, New Delhi

Module 2	Interpolation and Numerical Integration	Assignment	Programming/Simulation	No. of Classes: 10					
Topics:			I						
Interpolation: Lagrange interpolation, Interpolation in 2D, Numerical integration: Newton-Cotes and									
Gaussian Quadrature									
	Differentiation			No. of					
Module 3	and Fourier	Term Paper	Programming/Simulation	Classes: 10					
Tenier	Transform								
Topics:	antiation and Ta	union Transform union Du							
concept of differe	Implementing the	uner Transform using Py	Language linear algebra	s, vector and					
matrix operations.	implementing th	ie methous in programing	, language, intear algebra						
	ion & Tools that	can he used:							
1. Use of Sta	tistical Mechanics	s models and solving diffe	rent problems						
2. Python usi	ing Jupiter enviro	nment							
Project work/Assi	gnment: Mention	n the Type of Project /Ass	signment proposed for this cours	e					
Assessment Type	<u> </u>								
• M	idterm exam								
• As	signment (review	w of digital/ e-resource	from PU link given in reference	ces section -					
m	andatory to subm	nit screen shot accessing o	ligital resource.)						
• QI	, uiz		<u> </u>						
• En	d Term Exam								
Self-Learning									
Ising model using	Monte- Carlo sin	nulation							
Text Book									
Landau, Paez,	Bordieanu, 'Com	outational Physics- Proble	m Solving with Computers', 3 rd Ed	l., Wiley-VCH.					
References									
1.Jesse M. Kinder a	and Philip Nelson	, 'A Student's Guide to Py	thon for Physical Modeling', Prin	ceton					
University Press, 2	015.								
2.University Physic	cs Volumes 1 and	2 (OpenStax, 2016),							
https://op	enstax.org/detail	ls/books/university-physic	cs-volume-1						
https://op	enstax.org/detail	ls/books/university-physic	cs-volume-2.						
3.J.P. Mueller, Beg	inning Programm	ning with Python for Dumr	mies, Wiley Publications, 2017						
E-resources:									
1. https://presiun	iv.knimbus.com/	user#/searchresult?searc	chId=computational%20physics8	k					
t=1657687828581									
2. https://search.o	ebscohost.com/le	ogin.aspx?direct=true&dl	b=nlebk&AN=510994&site=ehos	<u>t-live</u>					
3. https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=566180&site=ehost-live									
4. https://search.o	ebscohost.com/lo	ogin.aspx?direct=true&dl	b=nlebk&AN=606257&site=ehos	t-live					
+. https://search.ebsconost.com/login.aspx?uirect=true@ub=mebk@AN=00025/@site=enost-iive									

Topics relevant to "Entrepreneurship Skill Development": Python programing, Applying						
concepts of Physics in computer programs for Entrepreneurship Skill Development through Participative						
Learning Techniqu	<mark>es</mark> . This is attained through the <mark>Assignment/Presentation</mark> as mentioned in the					
assessment compo	pnent in course handout.					
Catalogue	Dr. Anindita Bhattacharya					
prepared by	Dr. Pradeep Bhaskar					
	Dr. Mohan Kumar Naidu P					
Recommended	6 th BOS conducted on 26 th JAN, 2022					
by the Board of						
Studies on						
Date of	18 th Academic Council Meeting held on 3/08/2022					
Approval by the						
Academic						
Council						

YEAR

(Established under the Presidency University Act, 2013 of the Karnataka Act 41 of 2013)

A-8[2021] COURSE HAND OUT [Integrated Course]

SCHOOL: Engineering

DEPT.: Physics

DATE OF ISSUE: 12.09.2022

NAME OF THE PROGRAM: B.Tech

P.R.C. APPROVAL REF.: PU/AC18.11/PHY07/PHY2003

SEMESTER/YEAR: 1/2022-2023

COURSE TITLE & CODE: Computational Physics, PHY 2003

COURSE CREDIT STRUCTURE: 2-0-2

CONTACT HOURS: 2 classes of Theory/week

COURSE INSTRUCTOR: Dr. Anindita B, Dr. Pradeep Bhaskar, Dr. Mohan Kumar Naidu P

PROGRAM OUTCOMES:

Graduates of the B. Tech. Program in Computer Science and Engineering will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. (H)

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. (M)

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. (L)

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. (H)

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

REGISTRAR

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. (M)

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. (M)

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. (M)

COURSE PREREQUISITES:

NIL

COURSE DESCRIPTION:

This course introduces logarithmic concepts and familiarizes students with the basic computational tools which are essential for graduate students in computational physics and related areas. In this course, students work toward mastering computational skills and this course aims to give the students competence in the methods and techniques of calculations using computers. At the end of the course the student is expected to have a hands on experience in modeling, algorithm development, implementation and calculation of physical quantities. It is designed for the students who wishes to broaden their knowledge of applications and develop techniques.

COURSE OBJECTIVE:

The objective of the course is to familiarize the learners with the concepts of "Computational Physics" and attain **ENTREPRENEURSHIP SKILL** through **Participative Learning** techniques

COURSE OUTCOMES:

On successful completion of the course the students shall be able to:

- Apply programming language to plot the graphical representation of a function. [Bloom's level: 3]
- 2. Apply interpolation techniques to estimate the result of a function [Bloom's level: 3]
- 3. Solve partial differential equations using numerical computational techniques. [Bloom's level: 3]

MAPPING OF C.O. WITH P.O. [H-HIGH , M- MODERATE, L-LOW]

1 H			L
2 H M		L	L
3 L L M	Μ	L	L

COURSE CONTENT (SYLLABUS):

Module: 1

[10 Hrs] [Bloom's level selected: 2]

Python: Variables and assignments, arrays, control structures, programming styles, plotting in Python, data input/output

Module: 2

[10 Hrs] [Bloom's level selected: 2]

Interpolation: Lagrange interpolation, Interpolation in 2D, Numerical integration: Newton-Cotes and Gaussian Quadrature Random number generators, Monte Carlo Integration

Module: 3

[10 Hrs] [Bloom's level selected: 3]

Concept of differentiation and Fourier Transform using Python programming, ODE solvers, vector and matrix operations. Implementing the methods in programing language, linear algebra

SKILL SETS TO BE DEVELOPED:

- 1. An attitude of enquiry.
- 2. Confidence and ability to tackle new problems.
- 3. Ability to interpret events and results.
- 4. Ability to work as a leader and as a member of a team.
- 5. Assess errors in systems/processes/programs/computations and eliminate them.
- 6. Observe and measure physical phenomena.
- 7. Write reports.
- 8. Select suitable equipment, instrument, materials & software
- 9. Locate faults in system/Processes/software.
- 10. Manipulative skills for setting and handling systems/Process/ Issues
- 11. The ability to follow standard /Legal procedures.
- 12. An awareness of the Professional Ethics.
- 13. Need to observe safety/General precautions.
- 14. To judge magnitudes/Results/issues without actual measurement/actual contacts

DELIVERY PROCEDURE (PEDAGOGY):

The course is taught in an interactive manner with open book tests, presentations, group work and assignments to gauge learning during the classes.

Self-Learning Topics: Monte Carlo Integration

Experiential Learning Topics: Plotting in Python

Technology Enabled Learning Topics: Concept of differentiation and Fourier Transform using Python programming

Problem Based Learning: Vector and matrix operations

Topics for Participative Learning through Group discussion: . Implementing the methods in programing language

REFERENCE MATERIALS:

Text Book:

 Landau, Paez, Bordieanu, 'Computational Physics- Problem Solving with Computers', 3rd Ed., Wiley-VCH

Reference Materials:

- 1. Jesse M. Kinder and Philip Nelson, 'A Student's Guide to Python for Physical Modeling', Princeton University Press, 2015.
- University Physics Volumes 1 and 2 (OpenStax, 2016), https://openstax.org/details/books/university-physics-volume-1 https://openstax.org/details/books/university-physics-volume-2.
- 3. J.P. Mueller, Beginning Programming with Python for Dummies, Wiley Publications, 2017

E-Resources:

1. <u>https://presiuniv.knimbus.com/user#/viewDetail?searchResultType=ECATALOGUE_</u> BASED&unique_id=BOOKYARDS_1_15518

- 2. https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=2706837&site=ehost-live
- 3. https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=312238&site=ehost-live

GUIDELINES TO STUDENTS:

- 1. This is assisted learning. You need to do the learning and the faculty will only guide you.
- 2. It is necessary to spend time practicing and putting in interested effort.
- 3. Attending all the classes helps in gathering information in all aspects of the course.
- 4. The course focuses on helping you learn by yourself. You need to use the internet to get solutions and to develop further.

COURSE SCHEDULE FOR THEORY COMPONENT: (This is a macro level planning. Mention the unit wise expected starting and ending dates along with the tests/assignments/quiz and any other activities) [allot about 75% for delivary, about 10 to 12% for Evaluation Discussion, about 10 to 15% on integrating the learning Modules within the course and to the program]

SI. No.	Activity	Starting Date	Concluding Date	Total Number of Periods
01	Over View of the course	12-Sep-2022	12-Sep-2022	1
02	Module: 01	13-Sep-2022	19-Oct-2022	10

REGISTRAR

03	Module: 02	20-Oct-2022	02-Nov-2022	9
04	Midterm	03-Nov-2022	07-Nov-2022	1
05	Module: 03	08- Nov-2022	29-Nov-2022	8
06	Module: 1,2,3 revision	30-Nov-2022	31-Dec-2022	3
07	Last Instruction Day		31-Dec-2022	
08	End Term Examination	05- Jan-2023	25-Jan-2023	

SCHEDULE OF INSTRUCTION FOR THE THEORY COMPONENT: (This is a micro level planning and this is prepared unit wise. At the end of each Unit, mention unit is concluded.) [Here Mention the Self Learning component and the Innovative Methods if any.]

cl	Session				Delivery	
51.	no	Losson Titlo	Topics	Course Outcome	Mode	Deference
	[date if	Lesson mue	Topics	Number	&Tools	Reference
0	possible]				used	
1	2	Introduction to Python	Introduction	CO1	Projection	Text book
		programming				
2	3	Introduction to Python	Python: Variables	CO1	Projection	Text book
		programming	and assignments			
3	4	Introduction to Python	Arrays	CO1	Projection	Text book
Δ	5	Introduction to Python	Control structures	CO1	Projection	Text book
-	5	programming	control structures		rojection	TEXT BOOK
5	6	Introduction to Python	Programming styles	CO1	Projection	Text book
6	-	programming	Descent to a labor			T
6	/	Introduction to Python	Programming styles	C01	Projection	lext book
7	8	Introduction to Python	Plotting in Python	CO1	Projection	Text book
	-	programming	,			
8	9	Introduction to Python	Data input/output	CO1	Projection	Text book
		programming				
9	10	Interpolation and	Introduction	CO2	Projection	Text book
		Numerical Integration				
10	11	Interpolation and	Interpolation:	CO2	Projection	Text book
		Numerical Integration	Lagrange			
			interpolation			
11	12	Interpolation and	Interpolation:	CO2	Projection	Text book
		Numerical Integration	Lagrange			
12	12	Internelation and		<u> </u>	Projection	Toxt book
12	13	Numerical Integration		02	Projection	Text DOOK
13	14	Interpolation and	Revision	CO2	Projection	Text book
10	- -	Numerical Integration				. CAT SOOK
14	15	Interpolation and	Class Test/ Group	CO2	Projection	Text book
		Numerical Integration	Discussion		. 0	10.
	•			•	Se	ENCY UNIL

REGISTRAR

15	16	Interpolation and	Random number	CO2	Projection	Text book
		Numerical Integration	generators			
16	17	Interpolation and	Monte Carlo	CO2	Projection	Text book
		Numerical Integration	Integration			
17	18	Interpolation and	Monte Carlo	CO2	Projection	Text book
10	10	Numerical Integration	Integration	<u> </u>	Droiostion	Taytheok
18	19	Numerical Integration	Revision	02	Projection	Text Dook
10	20		Revision	(0)	Projection	Text book
15	20	Numerical Integration	Revision	02	Frojection	TEXT DOOR
20	21	Interpolation and	Ouiz	CO2	Projection	Text book
		Numerical Integration	~			
21	22	Midterm		CO1 & CO2		
22	23	Differentiation and	Concept of	CO1 & CO2	Projection	Text book
		Fourier Transform	differentiation and			
			Fourier Transform			
			using Python			
			programming			
23	24	Differentiation and	Concept of	CO3	Projection	Text book
		Fourier Transform	differentiation and			
			Fourier Transform			
			using Python			
24	25	Differentiation and	Concont of	<u> </u>	Projection	Toxt book
24	25	Fourier Transform	differentiation and	05	Projection	Text DOOK
			Fourier Transform			
			using Python			
			programming			
25	26	Differentiation and	ODE solvers	CO3	Projection	Text book
		Fourier Transform				
26	27	Differentiation and	Vector and matrix	CO3	Projection	Text book
		Fourier Transform	operations			
27	28	Differentiation and	Implementing the	CO3	Projection	Text book
		Fourier Transform	methods in			
			programing			
20	20	Differentiation and	Idliguage	<u> </u>	Projection	Toxt book
20	29	Fourier Transform	methods in	05	Projection	Text DOOK
			nrograming			
			language			
29	30	Differentiation and	linear algebra	CO3	Projection	Text book
		Fourier Transform	-			
30	31	Differentiation and	Revision	CO3	Projection	Text book
		Fourier Transform				
31	32		Class Test			
32	33		Revision module 1			
			and 2			

REGISTRAR

Topics relevant to development of "Entrepreneurship skill development": Python programming, applying concepts of Physics in computer programs for ENTREPRENEURSHIP Skill Development through Participative Learning Techniques. This is attained through the Assignment/Presentation as mentioned in the assessment component.

SI. No. 1	Assessment type Mid-Term	Contents Module 1,2	Course outcome Number CO 1,2	Duration (In Hours) 1.5	Marks 50	Weightage 25%	Venue, Date & Time
2	Assignment Review of Digital e- resources from Pres. Univ. link given in the references Section- (Mandatory to submit screenshot of accessing digital resource . otherwise it will not be evaluated)	https://search.ebs cohost.com/login. aspx?direct=true& db=nlebk&AN=270 6837&site=ehost- live	CO 1,2,3	-	50	25%	
3	End Term Exam	Module 1,2,3	CO 1,2,3	3	100	50%	

ASSESSMENT SCHEDULE FOR THEORY COMPONENT:

E-resources

- 1. https://presiuniv.knimbus.com/user#/searchresult?searchId=science%20and%20technology% 20of%20energy& t=1657688527218
- 2. https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=207566&site=ehost-live
- 3. https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=433890&site=ehost-live

COURSE CLEARANCE & EVALUATION CRITERIA:

A student with shortage of attendance (i.e., less than 75% of the classes actually conducted in every Course in the concerned Academic shall not be permitted to appear in the End Term Final Examinations of the Course(s) in which the attendance shortfall exists, irrespective of the student's academic performance in the other components of CA. The student shall be given a placeholder grade "NP" (Not Permitted), to indicate that the student has not been permitted to appear for the End Term Final Examinations due to shortage of attendance during the Academic Term in the concerned Course(s).

Pass/ Fail Criteria:

- Both conditions should be met <u>in the order given below</u> :
 - A minimum 40% out of the total of MIDTERM+FINAL ASSESSMENT
 - > A minimum 50% of Grand Total marks or F-grade limit under relative grading, whichever is lower

REGISTRAR

Examination Make-up Policy: No make-up will be given for any evaluation component for the course.

The criteria in the Academic Regulations will over-ride the clearance criteria mentioned here if there are any differences.

CONTACT TIMINGS IN THE CHAMBER FOR ANY DISCUSSIONS: (Here mention the fixed slots on any of the week days for students to come and interact with you)

Will be announced later

Sample Thought Provoking Questions [For Theory Component] :

(Here type sample typical questions for students 'reference)

SI No.	Question						Course Outcome No.	Bloom's Level
1	Create a program for insertion sort visualization using python						CO1	2
2	Using Lagra from the fo x y	ange's in ollowing 5 12	terpolation table: 6 13	n formula f 9 14	ind y(10) 11 16	5	CO2	3
3	Generate the f(x) = $\{1, 0\}$ f(x) has pe for L=0.5, F	he graph 0 ≤ <i>x</i> ≤ <i>L</i>] riod 2L Period=1	for f(x) =	$\{0, -L \leq x \leq$	≤ 0 }	5	CO3	2

Target set for course Outcome attainment:

SI. No	C.O. No.	Course Outcomes	Target set for attainment in percentage
01	CO1	Apply programming language to plot the graphical representation of a function.	60
02	CO2	Apply interpolation techniques to estimate the result of a function	50
03	CO3	Solve partial differential equations using numerical computational techniques.	60
10	NER		

Signature of the Course Instructor

OR

REGISTRAR

Signature of the Chairperson D.A.C.

Course Completion Remarks & Self-Assessment. [*This has to be filled after the completion of the course*]

[Please mention about the course coverage details w.r.t. the schedule prepared and implemented. Any specific suggestions to incorporate in the course content. Any Innovative practices followed and its experience. Any specific suggestions from the students about the content, Delivery, Evaluation etc.]

SI. No.	Activity As listed in the course Schedule	Scheduled Completion Date	Actual Completion Date	Remarks

Any specific suggestion/Observations on content/coverage/pedagogical methods used etc.:

Course Outcome Attainment:

SI. No.	C.O. No.	Course Outcomes	Target set for attainment in percentage	Actual C.O. Attainment In Percentage	Remarks on attainment & Measures to enhance the attainment
01	CO1	Apply programming language to plot the graphical representation of a function.	60	80	
02	CO2	Apply interpolation techniques to estimate the result of a function	50	70	

REGISTRAR

		Solve partial differential equations		50	
03	CO3	using numerical computational techniques.	60		

Dr Anindita B

Name and signature of the Course Instructor:

Dr. L

D.A.C. observation and approval:

BLOOM'S TAXONOMY

Learning Outcomes Verbs at Each Bloom Taxonomy Level to be used for writing the course Outcomes.

Cognitive Level	Illustrative Verbs	Definitions
Knowledge	arrange, define, describe, duplicate, identify, label, list, match, memorize, name, order, outline, recognize, relate, recall, repeat, reproduce, select, state	remembering previously learned information
Comprehension	classify, convert, defend, discuss, distinguish, estimate, explain, express, extend, generalize, give example(s), identify, indicate, infer, locate, paraphrase, predict, recognize, rewrite, report, restate, review, select, summarize, translate	grasping the meaning of information
Application	apply, change, choose, compute, demonstrate, discover, dramatize,	applying knowledge to actual situations

REGISTRAR

	employ, illustrate, interpret, manipulate, modify, operate, practice, predict, prepare, produce, relate schedule, show, sketch, solve, use write	
Analysis	analyze, appraise, breakdown, calculate, categorize, classify, compare, contrast, criticize, derive, diagram, differentiate, discriminate, distinguish, examine, experiment, identify, illustrate, infer, interpret, model, outline, point out, question, relate, select, separate, subdivide, test	breaking down objects or ideas into simpler parts and seeing how the parts relate and are organized
Synthesis	arrange, assemble, categorize, collect, combine, comply, compose, construct, create, design, develop, devise, explain, formulate, generate, plan, prepare, propose, rearrange, reconstruct, relate, reorganize, revise, rewrite, set up, summarize, synthesize, tell, write	rearranging component ideas into a new whole
Evaluation	appraise, argue, assess, attach, choose, compare, conclude, contrast, defend, describe, discriminate, estimate, evaluate, explain, judge, justify, interpret, relate, predict, rate, select, summarize, support, value	making judgments based on internal evidence or external criteria

REGISTRAR